
User's Guide to GrailVersion 2.5Darrell Raymond1Derick Wood2March 19961 Department of Computer Science, University of Western Ontario, London,Canada2 Department of Computer Science, Hong Kong University of Science and Tech-nology, Kowloon, Hong Kong 23

table of contentsIntroduction � 25Objects � 27Filters � 28Minimizing machines � 30Executing machines � 31Language equivalence is not identity � 33Using other alphabets � 33Generating large machines � 37An extended example � 38Implementation � 43Acknowledgements � 43

24

introductionGrail is a collection of programs for manipulating �nite-state ma-chines, �nite languages, and regular expressions. Using Grail you canconvert �nite-state machines to regular expressions or vice-versa, youcan convert �nite languages to machines or expressions, and you canconvert expressions and machines to �nite languages (if the languageof the expression or machine is �nite). You can minimize machines,make them deterministic, execute them on input strings, enumeratetheir languages, and perform many other useful activities.Each of Grail 's facilities is provided as a �lter that can be usedas a standalone program, or in combination with other �lters. Most�lters take a machine, language, or regular expression as input andproduce a new one as output. Input can be entered directly fromthe keyboard or (more usually) redirected from �les. To convert aregular expression into a �nite-state machine, for example, one mightissue the following command:% echo "(a+b)*(abc)" | retofm(START) |- 40 a 12 b 30 a 00 a 22 b 02 b 24 a 14 a 04 a 24 b 34 b 04 b 21 a 63 a 64 a 68 c 106 b 810 -| (FINAL) 25

The �lter retofm converts its input regular expression to a nondeter-ministic �nite-state machine, which it prints on its standard output.The machine is speci�ed as a list of instructions, with some specialpseudo-instructions to indicate the states that are start and �nal.The output of one �lter can be the input for another; for example,we can convert the machine back to a regular expression (the resultis folded here to �t onto the page):% echo "(a+b)*(abc)" | retofm | fmtore((aa*a+ba*a+a+b)(b+ba*a)*ba*aab+aab+aa*aab+ab+ba*aab+((aa*a+ba*a+a+b)(b+ba*a)*b+b)ab)cThe �lter fmtore converts a machine to a regular expression. Wecan make the machine deterministic, using the �lter fmdeterm, beforeconverting it to a regular expression:% echo "(a+b)*(abc)" | retofm | fmdeterm | fmtore(aa*b+bb*aa*b)(aa*b+bb*aa*b)*cWe can minimize the deterministic machine, using the �lter fmmin,before converting it to a regular expression:% echo "(a+b)*(abc)" | retofm | fmdeterm | fmmin | fmtoreb*aa*b(bb*aa*b+aa*b)*cWe can test the membership of a string in the given language byexecuting it on the machine:% echo "(a+b)*(abc)" | retofm | fmdeterm | fmmin| fmexec "ababababc"acceptedThe �lter fmexec executes its input machine on an argument stringand prints accepted if the string is a member of the language ofthe machine. Finally, we can enumerate some of the strings in thelanguage of the machine:% echo "(a+b)*(abc)" | retofm | fmdeterm | fmmin| fmenum -n 10abcaabcbabc 26

aaabcababcbaabcbbabcaaaabcaababcabaabcThe �lter fmenum enumerates the language of a machine, shortest�rst and then in lexicographical order; the argument -n 10 speci�esthe number of strings to be printed.objectsGrail manages regular expressions, �nite languages, and �nite-statemachines. Grail 's regular expressions follow the conventional theo-retical notation (not the UNIX notation). Each of the following is aregular expression:fg empty set"" empty stringa-b,A-Z any single letterxy catenation of two expressionsx + y union of two expressionsx* Kleene starGrail follows the normal rules of precedence for regular expres-sions; Kleene star is highest, next is catenation, and lowest is union.Parentheses can be used to override precedence. Internally, Grailstores regular expressions with the minimum number of parentheses(even if you input it with redundant parentheses).The conventional method for describing a �nite-state machine isas a 5-tuple of states, labels, instruction relation, start state, and�nal states. In Grail , however, machines are represented completelyby lists of instructions. The machine accepting the language ab, forexample, is given as:(START) |- 00 a 1 27

1 b 22 -| (FINAL)Each instruction is a triple that speci�es a source state, a label,and a sink state. States are numbered with nonnegative integers,and labels are single letters. In addition, the machine contains oneor more pseudo-instructions to indicate the start and �nal states.Pseudo-instructions use the special labels |- and -|, which can bethought of as end-markers on the input stream. The label |- canappear only with the (START) state, and the label -| can appear onlywith the (FINAL) state. (START) can appear only as a source stateof a pseudo-instruction, and (FINAL) can appear only as a targetstate of a pseudo-instruction.Unlike the conventional model for machines, Grail machines canhave more than one start state, and (as with conventional machines)more than one �nal state. Machines with more than one start stateare nondeterministic.Transitions need not be ordered on submission to Grail ; they'llbe ordered internally in the process of being input. The output ofGrail 's �lters is generally unsorted.Finite languages are speci�ed as a set of words, one per line. Thewords need not be sorted. If duplicate words appear in the input,they're discarded.filtersThe following list provides a brief description of the �lters providedby Grail . More details on individual �lters can be found by consult-ing the appropriate man pages.Predicates for �nite-state machinesThe following �lters return 1 if the argument machine possesses thedesired property, and 0 otherwise. A diagnostic message is also writ-ten on standard error. 28

iscomp test a machine for completenessisdeterm test a machine for determinismisomorph test two machines for isomorphismisuniv test a machine for universalityFilters for �nite-state machinesAmong other functionality, there are �lters for constructing �nite-state machines, complementing them, completing them, minimizingthem, executing them, and enumerating their languages.fmcment complement a machinefmcomp complete a machinefmcat catenate two machinesfmcross cross product of two machinesfmdeterm make a machine deterministicfmenum enumerate strings in the language of a machinefmexec execute a machine on a given stringfmmin minimize a machine by Hopcroft's methodfmminrev minimize a machine by reversalfmplus plus of a machinefmreach reduce a machine to reachable states andinstructionsfmrenum renumber a machinefmreverse reverse a machinefmstar star of a machinefmstats print information about a machinefmtofl convert a machine to a �nite languagefmtore convert a machine to a regular expressionfmunion union of two machinesPredicates for regular expressionsCurrently, there are only two predicates provided for regular expres-sions.isempty test for equivalence to empty setisnull test for equivalence to empty string29

Filters for regular expressionsIn addition to the basic construction operations for regular expres-sions (union, catenation, and star), Grail also supports conversionof regular expressions to �nite-state machines.recat catenate two regular expressionsremin minimal bracketing of a regular expressionrestar Kleene star of a regular expressionretofm convert a regular expression to a machineretofl convert a regular expression to a �nite languagereunion union of two regular expressionsFilters for �nite languagesGrail supports the conversion of �nite languages to �nite-state ma-chines and regular expressions. It also provides left and right `quo-tient' operators. The left quotient of a �nite language and a stringx is the set of words y such that xy is in the �nite language; rightquotient is de�ned similarly for yx.flappend append a given string to every wordflexec execute a �nite language on a given stringflfilter �nd intersection of �nite language and �nite-statemachinefllq left quotientflprepen prepend a given string to every wordflprod cross product of two �nite languagesflreverse reverse words in a �nite languageflrq right quotientfltofm convert a �nite language to a �nite-state machinefltore convert a �nite language to a regular expressionflunion union of two �nite languagesminimizing machinesIn Grail there are two ways to minimize machines. The standardmethod is to minimize by repeatedly partitioning the set of states30

according to di�erences in instruction labels. This method is imple-mented in the Grail �lter fmmin. The second method, introducedby Brzozowski, is to reverse the machine, make it deterministic, andrepeat these two steps. Using Grail , we can show that this procedureresults in an isomorphic result:% cat dfm(START) |- 00 a 10 b 41 c 22 d 33 -| (FINAL)4 e 55 f 66 -| (FINAL)% fmmin <dfm | >out% fmreverse <dfm | fmdeterm | fmreverse | fmdeterm >out2% isomorph out out2isomorphicBrzozowski's minimization technique is implemented by the Grail�lter fmminrev.executing machinesThe �lter fmexec is used to execute a machine, given an input string.By default, this �lter simply says whether a string is a member ofthe language of the machine. For example, we can apply fmexec tothe machine of the last section:% fmexec dfm "acd"accepted% fmexec -d dfm "abc"not accepted 31

If supplied with the -d option (for `diagnostic'), fmexec checks foracceptance and also indicates at each stage of execution which in-struction is being taken. Consider fmexec applied to the followingmachine:% cat nfm(START) |- 11 a 21 a 32 b 23 b 32 c 43 c 54 d 45 d 54 -| (FINAL)5 -| (FINAL)% fmexec -d nfm "abcd"on a take instructions1 a 21 a 3on b take instructions2 b 23 b 3on c take instructions2 c 43 c 5on d take instructions4 d 45 d 5terminate on final states 4 5accepted 32

language equivalence is not identityOne of the standard problems in textbooks on automata theory isto determine whether two regular expressions denote the same lan-guage. This is di�cult because, unlike machines, minimal regularexpressions are not unique. One procedure for checking languageequivalence involves several steps: (i) convert the expressions to non-deterministic machines (ii) convert the nondeterministic machines todeterministic machines (iii) minimize the deterministic machines (iv)test the machines for isomorphism. If done manually, this is a te-dious process; however, it can be done easily with Grail simply bycombining the appropriate �lters. For example:% echo "(rs+r)*r" | retofm | fmdeterm | fmmin | >out1% echo "r(sr+r)*" | retofm | fmdeterm | fmmin | >out2% isomorph out1 out2isomorphicThe two expressions are of the same size, are minimal (we determinethis by inspection), and they denote the same language, but they'renot identical.Non-identical but language-equivalent regular expressions are of-ten produced by application of Grail �lters.using other alphabetsAs distributed, Grail is provided with source code for two types ofalphabets: characters (used in the other examples in this paper),and regular expressions. It's possible to recompile Grail to managealphabets of your own choice. Consider for example an alphabet thatconsists of ordered pairs of integers. A �nite-state machine over thisalphabet looks like this:(START) |- 00 [1,2] 11 [2,2] 11 [3,4] 22 -| (FINAL)We can convert this machine to a regular expression of ordered pairs:33

% fmtore op[1,2][2,2]*[3,4]We can enumerate the language of the machine, generating a set ofstrings of ordered pairs:% fmenum -n 10 op[1,2][3,4][1,2][2,2][3,4][1,2][2,2][2,2][3,4][1,2][2,2][2,2][2,2][3,4][1,2][2,2][2,2][2,2][2,2][3,4][1,2][2,2][2,2][2,2][2,2][2,2][3,4][1,2][2,2][2,2][2,2][2,2][2,2][2,2][3,4][1,2][2,2][2,2][2,2][2,2][2,2][2,2][2,2][3,4][1,2][2,2][2,2][2,2][2,2][2,2][2,2][2,2][2,2][3,4][1,2][2,2][2,2][2,2][2,2][2,2][2,2][2,2][2,2][2,2][3,4]We can complement the machine:% fmcment op(START) |- 00 [1,2] 11 [2,2] 11 [3,4] 20 [2,2] 30 [3,4] 32 [1,2] 32 [2,2] 32 [3,4] 31 [1,2] 33 [1,2] 33 [2,2] 33 [3,4] 30 -| (FINAL)3 -| (FINAL)1 -| (FINAL)Grail doesn't read an explicit speci�cation of the alphabet of its ma-chines, and so must infer the alphabet over which complementation34

is to be performed. Grail 's complement operator assumes that theset of labels on the instructions de�nes the whole alphabet, and socomplementation is done with respect to that set. This makes itpossible to do complementation when the alphabet is chosen from apotentially in�nite set, like that of ordered pairs.3We can also manipulate machines whose instruction labels areregular expressions:(START) |- 00 <ab*> 10 <ba*> 21 <a+b+c >32 <c(d+e)*> 33 <x> 03 -| (FINAL)Note that we use the angle brackets to delimit each regular expres-sion. We can enumerate the language of this machine, producing aset of strings of regular expressions:% fmenum -n 10 re<ba*><c(d+e)*><ab*><a+b+c<ba*><c(d+e)*><ba*><c(d+e)*><x><ba*><c(d+e)*><ab*><a+b+c<ab*><a+b+c<ba*><c(d+e)*><ba*><c(d+e)*><x><ab*><a+b+c<ba*><c(d+e)*><ab*><a+b+c<ba*><c(d+e)*><x><ba*><c(d+e)*><ba*><c(d+e)*><x><ba*><c(d+e)*><x><ba*><c(d+e)*><ab*><a+b+c<ab*><a+b+c<ab*><a+b+c<ba*><c(d+e)*><ba*><c(d+e)*><x><ab*><a+b+c<ab*><a+b+c<ba*><c(d+e)*><ab*><a+b+c<ba*><c(d+e)*><x><ab*><a+b+c<ba*><c(d+e)*>We can also complete the machine (that is, produce an equivalentmachine in which every state has an instruction on every symbol).Completion, like complement, is done with respect to the limited3 If the alphabet de�ned by a given machine's instructions does not representthe set over which you want complementation to be performed, it is relativelysimple to generate a language-equivalent machine that is appropriate|yousimply add a single non-�nal sink state, and add as many instructions as arenecessary to include the desired symbols from your alphabet.35

alphabet of only those labels that appear on the instructions of theinput machine:% fmcomp re(START) |- 00 <ba*> 20 <ab*> 11 <a+b+c 02 <c(d+e)*> 33 <x> 00 <a+b+c 40 <c(d+e)*> 40 <x> 43 <ba*> 43 <ab*> 43 <a+b+c 43 <c(d+e)*> 42 <ba*> 42 <ab*> 42 <a+b+c 42 <x> 41 <ba*> 41 <ab*> 41 <c(d+e)*> 41 <x> 44 <ba*> 44 <ab*> 44 <a+b+c 44 <c(d+e)*> 44 <x> 43 -| (FINAL)Finally, we can generate a regular expression corresponding to thecomplete machine:% fmcomp re | fmtore% bin/fmcomp remach | bin/fmtore<ba*>(<c(d+e)*><x><ba*>)*<c(d+e)*>+(<ab*>+<ba*>(<c(d+e)*><x><ba*>)*<c(d+e)*><x><ab*>)(<a+b+c<ab*>+<a+b+c<ba*>(<c(36

d+e)*><x><ba*>)* <c(d+e)*><x><ab*>)*<a+b+c<ba*>(<c(d+e)*><x><ba*>)*<c(d+e)*>Notice that while the names of the �lters for these special al-phabets are the same as the names of the �lters for the standardalphabet, we cannot use the same �lters. Each alphabet requires anew set of �lters. You can either use di�erent names for these �lters,or you may put them in di�erent directories and modify you $PATHas necessary.generating large machinesOur previous examples showed Grail �lters being used in pipelines.Grail �lters can also be used in general purpose shell scripts. Sincemachines and expressions are stored as text �les, they can also beprocessed with standard �lters. In the following session, we outputa machine (to display its content), then apply cross product recur-sively to the machine, using wc to compute the size of the resultingmachines:$ cat nfm(START) |- 00 a 10 a 21 -| (FINAL)2 -| (FINAL)$ for i in 1 2 3 4> do> bin/fmcross nfm nfm >tmp> mv tmp nfm> wc nfm> done 9 27 89 nfm33 99 349 nfm513 1539 6413 nfm131073 393219 2162701 nfm$ 37

As we recursively apply cross product, the resulting machines growin size very rapidly.The preceding script was written in the Bourne shell (sh) ratherthan the C-shell (csh). We could just as easily have called Grail�lters from ksh, bash, tcsh, vi, or any other program that canlaunch processes as part of its activity.The machines generated by cross product of a machine with itselfhave the same language (as before, we can determine this by mak-ing the result of the cross product deterministic, minimizing, andchecking for isomorphism). Generating large machines for a givenlanguage is useful for evaluating the performance of other Grail �l-ters.an extended exampleIn this section we show how Grail can be used to do some simplelexical processing.We start with a �le containing a list of C++ keywords, one wordper line. We'll convert this to a regular expression with the Unixprogram tr. Next, we convert the regular expression to a �nite-state machine; the conversion is nondeterministic, incomplete, andnonuniversal.% tr '\012' '+' < keywdasm+auto+break+case+catch+char+class+const+continue+default+delete+do+double+else+enum+extern+float+for+friend+goto+if+inline+int+long+new+operator+private+protected+public+register+return+short+signed+sizeof+static+struct+switch+template+this+throw+try+typedef+union+unsigned+virtual+void+volatile+while% tr '\012' '+' <keywd | retofm >key.fm% isdeterm key.fmnondeterministic% iscomp key.fm 38

not complete% isuniv key.fmnonuniversalWe can make the machine deterministic and then minimize it, usingeither Hopcroft's algorithm or reversal and subset construction. Theresults of the two algorithms are isomorphic, and language-equivalentwith the original machine.% fmdeterm key.fm >key.det% isdeterm key.detdeterministic% fmminrev key.det >key.mv% fmmin key.det >key.min% isomorph key.mv key.minisomorphic% isomorph key.mv key.fmnonisomorphicUsing wc shows us the sizes of the machines that are produced:% tr '\012' '+' <keywd | retofm | wc353 1059 3876% tr '\012' '+' <keywd | retofm | fmdeterm | wc263 789 2579% tr '\012' '+' <keywd | retofm | fmdeterm | fmmin | wc175 525 1429We can enumerate the language of the result. Note that the keywordsare produced in order of their length, and then sorted lexicographi-cally. 39

% fmenum key.detdoifasmforintnewtryautocasecharelseenumgotolongthisvoidbreakcatchclassconstfloatshortthrowunionwhiledeletedoubleexternfriendinlinepublicreturnsignedsizeofstaticstructswitch 40

defaultprivatetypedefvirtualcontinueoperatorregistertemplateunsignedvolatileprotectedWe can execute the machines with various strings and, using the -doption, show the instructions that are executed at each point.% fmexec key.det "protected"accepted% fmexec -d key.fm "priVate"on p take instructions244 p 245258 p 259276 p 277on r take instructions245 r 247259 r 261on i take instructions247 i 249no states accessible on Vnot acceptedNext we produce the complementary machine, which will accept anystring other than the C++ keywords. This is useful for determininga subset of valid identi�ers. We enumerate the �rst 15 of these (notethat the empty string is not a keyword, though of course it is notan identi�er either). We can test potential identi�ers by executingthem on the complement machine.% fmcment key.mv >key.cment41

% fmenum -n 15 key.cmentabcdefghiklmno% fmexec -d key.cment "protectx"on p take instructions0 p 16on r take instructions16 r 49on o take instructions49 o 82on t take instructions82 t 107on e take instructions107 e 120on c take instructions120 c 125on t take instructions125 t 93on x take instructions93 x 127terminate on final states 127accepted 42

implementationGrail is written in C++. It includes classes for regular expressions(re), �nite languages (fl), and �nite-state machines (fm). It in-cludes its own array, string, list, set, and bit vector classes, whichare also useful for programming that does not involve machines orexpressions. The class library provides all the capabilities of the �l-ters and more, accessible directly from a C++ program. For moreinformation on programming with the Grail class library, consult theProgrammer's Guide to Grail.acknowledgementsThis research was supported by a grant from the Natural Sciencesand Engineering Research Council of Canada. Darrell Raymond canbe reached at drraymon@csd.uwo.ca. Derick Wood can be reachedat dwood@cs.ust.hk.
43

