
Programmer's Guide to GrailVersion 2.5Darrell Raymond1March 19961 Department of Computer Science, University of Western Ontario, London,Canada 45

table of contentsIntroduction � 47Working with Grail � 48Organization of the �les � 48Compiling � 49Testing � 50Filters � 52Classes � 53Changing and extending Grail � 58Adding a new Grail �lter � 58Adding a new alphabet to Grail � 61Modifying Grail 's classes � 65Miscellaneous � 67Changes in version 2.5 � 68Changes in version 2.4 � 70Changes in version 2.3 � 72Changes in version 2.2 � 73Changes in version 2.1 � 74Changes in version 2.0 � 76Changes in version 1.2 � 77
46

IntroductionThis document is about programming with the Grail class library. Itdescribes how to compile, test, and pro�le Grail , how to write C++programs using Grail , and how to modify and extend Grail .If you plan only to install Grail with its standard �lters, thenyou need to read only the �rst few sections of the document, whichdescribe the organization of the �le system and how to go aboutcompiling and testing Grail . It isn't necessary to know much aboutC++ in order to use Grail as shipped. If you intend to parameterizeGrail 's �nite-state machines and expressions, or to write your own�lters, then you should read most of the document. In addition,you should ensure that you have a good understanding of templates,since most of Grail 's classes are template classes.This research was supported by the Natural Sciences and Engi-neering Research Council of Canada. The author can be reached atdrraymon@csd.uwo.ca.
47

Working with GrailThis section is about compiling and testing the distributed versionof Grail .organization of the filesGrail is a self-contained package organized in the following directo-ries:� binThis directory contains the Grail �lters for a given architec-ture. Generally, these programs are symbolic links to one ofthe binaries found in binaries.� binariesThis directory contains subdirectories for speci�c machine ar-chitectures, and compiled binaries for �lters for four types ofalphabets.� classesThis directory contains subdirectories for each ofGrail 's classes.These classes de�ne the objects that Grail can manipulate.Most of the source code belongs to classes.� docThis directory contains .dvi �les for the User's Guide, theProgrammer's Guide, and the Release Notes.� manThis directory contains man pages for Grail , suitable for onlinedocumentation.� testsThis directory contains test scripts, test machines, and theexpected results for each test.48

There are also directories present for each type or class that servesas an alphabet. The distribution provides four di�erent alphabets,and programmers are able to add their own alphabets. The followingalphabet directories are in the distribution:� charASCII characters� intintegers� mlycharMealy machines (with ASCII character alphabet)� mlyintMealy machines (with integer alphabet)The binaries in binaries are labelled char.out, mlychar.out, int.out,and mlyint.out, corresponding to the �lters for a given input alpha-bet.compilingBefore compiling Grail , you need to specify which system and C++compiler you're using. In the Makefile, you choose between thefollowing:# set SYS to:# XLC - if you're using IBM's xlC under AIX# DEC - if you're using USL's Cfront on DEC Ultrix# SUN - if you're using USL's Cfront under Sun OS# WAT - if you're using Watcom under DOS# SGI - if you're using Delta/C++ compiler under IRIX#SYS=WATSYS=XLC#SYS=DEC#SYS=SUN#SYS=SGI 49

Uncomment the appropriate SYS variable for the type of systemyou're using. This will automatically result in choosing the appropri-ate compiler, compilation ags, and other operating system utilitiesneeded to prepare Grail .Assuming you have both the source code and the distributed bi-naries, there are two ways to install Grail . The �rst method simplyinstalls the binaries that are appropriate for your architecture. Ex-ecute one of the following:make sparcmake rs6000make decmake sgiwmake /h /c 486 "MAKE=wmake /h /c" 486No compilation occurs with this technique; it simply constructs sym-bolic links for each �lter to the appropriate existing binary. 1If you want di�erent compilation options, or the distributed bina-ries simply don't work in your environment, then you must compilethe code �rst before installing binaries. You can do this simply byinvokingmakeor wmake /h /c "MAKE=wmake /h /c"if you are using Watcom.Compilation �rst constructs a single �le from each of Grail 'sclasses, compiles this �le (using the compiler designated by the SYSvariable), copies the binary to the appropriate binaries subdirec-tory, and then makes all �lters. This process is repeated for eachalphabet.testingGrail has its own test system. The test system is useful as a checkthat Grail has compiled correctly. It's also useful as a preliminary1 In the case of 486, separate copies of the binary are made for each �lter, sinceDOS doesn't have symbolic links. 50

check that modi�cations you make to Grail don't a�ect the correct-ness of its algorithms. Grail is tested by doingmake checkoutor wmake /h /c "MAKE=wmake /h /c" checkoutfrom the root of the Grail �lesystem. The testing procedure is de-signed to check the �lters designed for an ASCII alphabet against thetest objects. Testing scripts execute each �lter with each test objectas input, and compare the result with a previously obtained resultstored in a subdirectory named for the �lter; for example, fmtore isrun against d1 and the result compared with tests/fmtore/d1. Ifthe result is identical, the script proceeds to the next test; otherwise,the di�erences are printed and the whole test result is placed in thedirectory errors. If tests are successfully completed, the followingoutput will be generated:Testing fmcment on d1Testing fmcment on d2Testing fmcment on d3Testing fmcment on d4Testing fmcment on d5Testing fmcment on d6Testing fmcment on n1Testing fmcment on n2Testing fmcomp on d1Testing fmcomp on d2Testing fmcomp on d3Testing fmcomp on d4...(No news is good news.) Some of the tests may put diagnostic mes-sages on the standard error stream (for example, can't minimizenfm) but this is normal output. If a �lter fails a test, the di�er-ence between the stored result and the computed result is displayedand is saved in the errors directory. An error is saved in a �le51

with the name filter.object; for example, an error when runningfmtore on n2 would result in the �le errors/fmtore.n2. Comparingerrors/fmtore.n2 with fmtore/n2 will help you debug fmtore.The output of test runs and the stored results are both sortedbefore comparison. This avoids di�erences that result only from theorder of the output. What it does not avoid is di�erences that re-sult from language-equivalent but non-identical objects. The testingprocedure can detect only non-identical output; it isn't satis�ed bylanguage-equivalent results, or even isomorphic results. Thus, if youwrite a completely new conversion for �nite-state machines to regu-lar expressions, for example, you should not expect that your con-version will generate identical results for the test machines (thoughthey should be language equivalent).The set of test cases includes some boundary cases and a fewsmall examples. We hope to expand the set of test cases in futureversions of Grail .2filtersGrail provides 41 �lters that can be used like any other commandavailable at shell level. In previous versions of Grail , each of these�lters was represented by a separate source code �le and a sepa-rate executable. Structuring the �lters in this way led to very longcompile times, since some compilers re-instantiate the templates foreach �lter. Another problem with this approach is that the �ltercode itself was duplicated many times.In Version 2, we've taken a di�erent approach. All �lters for agiven alphabet are implemented by a single executable. This exe-cutable determines which function to apply by checking the name bywhich it was invoked. If the char.out executable was invoked withthe name fmdeterm, for example, then it would execute the conver-sion to deterministic machines. The advantage of this technique isthat it's easier and faster to copy or rename a �le than to recompileit. This is particularly true for the current version of Grail , whichmakes extensive use of templates.2 Note that we don't yet have fmexec in the test suite; this may explain whywe've shipped buggy versions of fmexec in the past!52

array listsetstringbitsflfminstpoolrestatesubexp cat expempty setempty stringplus expstar expsymbol expTable 2.1: Grail 's class hierarchy.Under Unix, each of the individual �lters in Version 2 is actuallya symbolic link from bin to the appropriate executable in binaries.Using symbolic links eliminates the cost of storing multiple copies ofthe �les. Under DOS, multiple copies of the executable are used.classesVersion 2.5 of Grail employs 18 classes, organized in a relativelyat hierarchy shown in Figure 2.1. The main classes are fl (�nitelanguages), fm (�nite-state machines), and re (regular expressions).These classes de�ne the capabilities that make Grail useful for sym-bolic computation with machines and expressions.There are two types of support classes. The �rst type imple-ments the basic container classes set, list, array, string, bits,and pool. In Grail , lists, sets, and strings are all forms of array.bits manages bitmaps, and pool manages a memory pool. The53

second type of support class implements substructures of the mainclasses; state implements the states of a �nite-state machine, instimplements the instructions of a �nite-state machine, and subexpimplements the subexpressions of a regular expression.subexp is an abstract base class for the set of possible subex-pressions. These include the empty set (empty set), empty string(empty string) single-symbol expression (symbol exp), catenationexpression (cat exp), union expression (plus exp), and Kleene clo-sure expression (star exp).With the exception of state, all of Grail 's classes are templatesthat are instantiated for a chosen type or class. Grail thus provideswide exibility in designing and executing machines.Here are some general comments about the design of the classes:� All assignment and copying is deep; that is, the whole sub-structure of an object is duplicated. None of Grail 's structurespoint to shared data. There is no reference counting.� There are no iterator classes. Utilities that want to iteratethrough a set or a list simply use a loop over the selectionoperator.� No implicit casts have been de�ned, and the number of copyconstructors (which act like implicit casts) is severely limited.This has been done to ensure the strictest possible type check-ing.Here are some comments about technical points of the design of theclasses.fm Internally, fms are stored as three sets: a set of start states, a setof �nal states, and a set of insts.fm contains operations for `disjoint union'. These can be usedfor fast union of machines that are known to be disjoint. Thestandard union operator (operator+=) tests for membershipbefore adding, while the disjoint union does not. It is theprogrammer's responsibility to check for disjointness.fm contains operations for `selecting' instructions based on theirstates or labels. These operations will in future be moved to54

a class relation that will support general-purpose project,select, and join operators.re Why isn't fmtore a member of fm, rather than of re? fmtoreoperates on an fm<S> and generates an fm<re<S> >; if it wasmade a member of fm, it would result in an in�nite templateinstantiation (the generated fm<re<S> > would itself be a tar-get of fmtore, generating an fm<re<re<S > > >, that woulditself be a target of fmtore : : :).state States in a �nite-state machine are non-negative integers. Theclass state shifts all integers by 2, to ensure that 0 and 1 areavailable to represent the start and �nal pseudo-state, respec-tively.inst looks for the pseudo-labels |- and -| on its input, and gener-ates them on output, but does not represent them internally.array is the basic data structure. lists, sets, and strings are allderived from array, with small di�erences that are due to thedi�erent update constraints required by each structured. Gen-erally speaking, sets are unordered and do not have duplicates;lists preserve their order and may have duplicates; strings pre-serve their order, may have duplicates, and can be comparedwith a strcmp-like function. There are e�cient conversion op-erations from list and from set that simply adjust the arraypointers (and in the case of conversion from list, removes du-plicates); these conversion routines do not preserve the originallist or set.array includes a merge function that can be used to quicklymerge two sorted arrays, and produce a sorted result. Thisfunction relies on the programmer to ensure that the originalarrays are sorted.list de�nes a static comparison function that can be passed toqsort.set contains operations for `disjoint union'. These can be used forfast union of sets that are known to be disjoint. The stan-dard union operator (operator+=) tests for membership before55

adding, while the disjoint union does not. It is the program-mer's responsibility to check for disjointness.string in Grail is not a char*. Even a string<char> is not achar*, since it isn't null-terminated. It's necessary to appenda null character to a string<char>'s content if you intend tohandle it with functions such as strcmp or printf.string de�nes a function ptr()which returns a char* pointer.This is a trapdoor for potential problems, since the array canbe arbitrarily modi�ed without the string object adjusting itssize and maximum value. Use this capability only for opera-tions that do not perform update to the array.The string comparison operators are de�ned so that stringswill be ordered �rst by size, then lexicographically within equalsizes. This di�ers from the usual ordering, but is more appro-priate for dealing with languages, where we typically want tosee the shortest words �rst.subexp A subexp is the virtual base class for the recursive de�ni-tion of regular expressions. A regular expression contains onesubexpression, which may be one of empty set, empty string,symbol exp, cat exp, plus exp, or star exp. The latter threesubexpressions are themselves made up of subexpressions.One interesting problem for subexpressions is de�ning theircomparison operators. Individual subexpressions are orderedaccording to the following precedence:empty set < empty string < symbol exp < plus exp < cat exp< star expHence, empty string::operator>(const empty set<S>&)should return 1, since empty string expressions are alwaysgreater than empty set expressions. We cannot simply comparethe content of subexpression pointers, however, since functionarguments are interpreted according to their apparent type,not their actual type. Each subexpression therefore de�nes aset of functions of the form compare xzy exp. This functiondetermines how a given subexpression compares to an xyz ex-pression. In e�ect, we are using two function calls (the opera-56

tor and the compare xyz exp) to determine the actual types ofboth arguments to the comparison operation. This techniqueis called double dispatching.Most subexpressions de�ne a new subexp() function, which isthe actual constructor. This function is de�ned because it isnot possible to have virtual constructors. Similarly, the func-tions copy and clone are de�ned to provide the e�ect of avirtual constructor. See p. 217 of Stroustrup's The C++ Pro-gramming Language, 2nd Edition for more information.star exp overloads the star operator of subexp and de�nesit as a no-op. This has the e�ect of ensuring that a `starred'expression is only starred once.

57

Changing and extending GrailThere are two basic ways to modify Grail : you can add a newalphabet, or you can add some new functionality that's alphabet-independent. The latter method typically results in a new �lter.adding a new Grail filterA new �lter for Grail may simply combine existing Grail functions,or it may include new functionality that you add to one or more ofGrail 's classes. As an example, let us suppose you have discovered anew operation on machines that you call `squeezing', and you wantto add a �lter that `squeezes' a machine.The �rst task is to write up the algorithm as a member function ofthe class fm. You might put this in a �le classes/fm/squeeze.src.Note that we use the .src su�x, rather than .C or .cpp, because wedon't compile routines separately; instead, all the .src �les will becatenated together to make up one �le describing fm.1 squeeze.srcwill make use of existing functions in fm, and it will probably alsouse other data structures in Grail , such as sets and lists. Youneedn't worry about including any header �les if you only use otherGrail classes, since they are all (eventually) provided for you.The second task is to ensure that squeeze.srcwill be included inthe compilationofGrail . You do this by making sure that squeeze.srcis listed in the �le classes/fm/include.h.The third task is to arrange for a `squeeze' �lter to be producedwhen Grail is compiled. This involves several steps:1. Add the necessary code to invoke fm::squeeze to char/grail.C.grail.C is essentially a large case statement that selects theaction to be executed based on the value of its name that wasused to invoke the program; that is, based on the value ofargv[0]. Simpli�ed, grail.C looks like this:1 Even this �le will not be separately compiled; since this �le describes a tem-plate, the compiler can't do much without a type parameter.58

main(argc, argv){ ..if (strcmp(my_name, fmcment) == 0){ // do complement operation }if (strcmp(my_name, fmcat) == 0){ // do catenation operation }if (strcmp(my_name, fmenum) == 0){ // do enumeration operation }..}The variable my name is initialized to argv[0]. To make a`squeeze' �lter, you would add something like:if (strcmp(my_name, fmsqueeze) == 0){ get_one(a, argc, argv)a.squeeze();cout << a;return 0;}Here the programmer arranges for fmsqueeze to be the name ofthe �lter. If the executable is called with this name, then it willenter the body of the if statement. The function get one is autility function that obtains the input machine; it will get inputeither from a �le or from standard input (if `squeezing' was abinary operation, you would use the utility function get two toget two �nite-state machines as arguments. The input machineis stored in a; the function squeeze is called, the squeezedmachine is printed on standard output, and the �lter returns.2. De�ne the strings that will used to name the �lter's �le.59

fmsqueeze, the second parameter to the strcmp in char/grail.C,is not a string but a variable pointing to a string. This variableis initialized to di�erent strings for di�erent operating systems.Under DOS, it points to an uppercase name with a .EXE ex-tension, and limited to 8 characters. Under UNIX, it points toa lowercase name with no extension and not limited to 8 char-acters. In char, you will �nd �les names.h and dosnames.hthat de�ne the names to be used for each �lter. You must adda de�nition for fmsqueeze to each of these �les.3. Repeat the previous two steps for int, mlychar, mlyint, andany other alphabets that your version of Grail supports.4. Add a line to the main Makefile to create a symbolic link frombin/fmsqueeze to the executable binaries/*/char.out.This step must be performed for every machine architectureyou want to support.To fully integrate your �lter with Grail , you should also add it tothe test directory. To add the �lter to the test directory, you needto do the following:� Make a directory tests/fmsqueeze. This is where pre-computedresults of testing are kept.� Modify tests/Makefile to run fmtest (or fm2test, if your�lter takes two arguments) on your �lter.� Run your �lter on each of the test cases and carefully checkthe output. If you're certain that the results are correct, thenstore the output for each test case in tests/fmsqueeze. (Ifyou're not certain that the output is correct, then by storingthe output all you're doing is giving future testers a false senseof con�dence.) The result of `squeezing' dfm1 should be intests/fmsqueeze/dfm1, the result of `squeezing' dfm2 shouldbe in tests/fmsqueeze/dfm2, and so on.� If you need to add some new test machines to test specialconditions (for example, an `unsqueezable' machine) for your�lter, it would be useful if you also run all the other �lters in60

Grail on this test case, check their results, and add the outputto the respective directories. This practice will increase thevalue of the test system for the whole of Grail .� Write a man page for your new �lter.Adding functionality may seem too complicated. The only excusewe can o�er is that when you have an environment that attemptsto support multiple architectures, operating systems, and alphabets,there is going to be a lot to worry about.adding a new alphabet to GrailAdding a new alphabet can be simpler than adding new functionality(we emphasize `can'|it may not be!) If your type or class is wellspeci�ed, and you have a modern compiler, then almost all of thework will be done for you, and all of the functionality of Grail willbe carried over to your parameterized class.Parameterizing over a base typeSuppose you want to create �nite-state machines whose instructionlabels are instances of int. The following steps are necessary:1. Do a recursive copy of the directory char (or some other di-rectory for an existing alphabet type) to a new directory int.2. Edit int/grail.C.Change all variables of type fm<char> to fm<int>.Change all variables of type re<char> to re<int>.Change all variables of type fl<char> to fl<int>.Change all variables of type string<char> to string<int>.3. Edit int/lexical.h.You need to de�ne lexical delimiters that will be used to in-put and output machines and expressions of type int. Thefollowing delimiter variables need to be de�ned:61

static char re_star<int>;static char re_plus<int>;static char re_cat<int>;static char re_lparen<int>;static char re_rparen<int>;static char* re_estring<int>;static char* re_eset<int>;static char re_left_delimiter<int>;static char re_right_delimiter<int>;static char re_left_symbol_delimiter<int>;static char re_right_symbol_delimiter<int>;There is one instance of each of these variables per parameter-ized class; so, there is one re<char>::re star, one re<int>::re star,and so on. These variables are provided to permit you to de�neyour own symbols, either because you prefer some other delim-iters or because one or more of the defaults is a valid symbolin the input alphabet you want to use.Note that the default symbol for catenation and the left andright delimiter are both 0. If these values are speci�ed for thesevariables (only), then no output is generated for those symbols.4. Edit int/names.h and int/dosnames.h.You need to create names for all the executables that satisfythe constraints that the operating systems impose on �lenames.You may also wish to create names that are distinguishablefrom all other Grail executables or other programs you use(alternatively, you can have several directories for �lters, andchange your search path to use only the ones appropriate for agiven project).5. Edit int/Makefile. Change all the executable names to be thesame as those you used in int/names.h and int/dosnames.h.The single binary �le should also be changed to the name ofyour type (char.out should become int.out).6. Edit the root Makefile. Add a compilation statement withTYPE=int. Add install statements for each architecture forint. Add int to the make clean command.62

7. Compile Grail (which, if you've done the previous steps cor-rectly, will compile all types and install all �lters).Remember that using a template inside a template is permitted, butyou must leave a space between end-brackets. That is,fm<re<char> >is valid, butfm<re<char>>is not (the C++ parser thinks that >> is the ostream operator, notthe end of the template speci�cation).Parameterizing over your own classesParameterizing over your own classes or types is much the same asparameterizing over base types or Grail types. The main di�erence isthat the grail.C �le must be able to �nd the class de�nition and itsmember �les. Typically this is done by copying them to the directoryfor that alphabet, and putting an #include statement in grail.C2There are two problems that may arise with parameterization ofyour own classes.The �rst problem is the provision of minimally required functionsand operators. Grail 's templates (like those of any other C++ classlibrary) operate on the assumption that certain functions are de�nedby the type used for parameterization. There is no way for us toarrange that you de�ne these functions, but if they aren't de�ned(or if you de�ne them ambiguously), then your compilation will failat template instantiation time. We require that you de�ne a smallnumber of operators:2 For classes that you only need to link, you are only required to make the classheader accessible; the compilation command should be altered to include thenecessary linking directive to locate your class binary.63

===!=<><<>>If you have de�ned these operators for your type, it should in-stantiate without trouble.Even if all necessary operators are de�ned, you may misinterpretthe results of Grail 's operations. To understand this problem, let'slook at fm<re<char> > in some detail.There are at least two possible ways to de�ne the == operatorfor re<char>. One way, based on identity, treats two re<char>sas equivalent if they are identical. The second way, based on lan-guage equivalence, treats two re<char>s as equivalent if they denotethe same language. In general, the only feasible way to determinelanguage equivalence for regular expressions is to convert them to�nite-state machines, minimize the �nite-state machines, and testthe minimal �nite-state machines for identity. This test is an ex-pensive proposition, so there is some motivation for choosing to baseequivalence on identity.Grail , of course, has no way of knowing which choice you havemade; indeed, the whole point of parameterization is that it shouldnot need to know which choice you have made. Grail simply takesit for granted that the operator == will return positively if the tworegular expressions are equivalent, and negatively otherwise. Butyour choice of semantics for == will a�ect the outcome of Grail 'soperations. == is used in subset construction, for example, to clus-ter all states which are reachable on the same instruction label. Ifyou've de�ned language equivalence as your semantics, then Grailwill treat the regular expressions a and a*a(a+a) as equivalent; ifyou've chosen identity as your semantics, then Grail will treat thesetwo expressions as distinct. Thus, the two semantics lead to di�erentoutput.Parameterization allows Grail to implement a collection of func-tions that are performed on `black boxes', which you can instantiatewith a type. Grail will provide correct results, but only within the64

semantics you de�ned for the operators of that type. If you choose tode�ne identity semantics, don't expect to get language equivalencesemantics in the result.The same is true of the semantics of the other comparison oper-ators <, >, and !=.modifying Grail 's classesModifying Grail 's classes can be straightforward, but it requires agood understanding of three complicated areas: C++ templates,Grail 's existing structure, and the theoretical properties of �nite-state machines and regular expressions. Here are some points toremember:1. Maintain the separation between a class's interface and its im-plementation. The class fm, for example, is implemented astwo sets of states and one set of insts, but this should not bevisible outside the class. As much as possible, ensure that theinterface is restricted to logical functionality.2. Remember that your new function must work regardless of thetype of the instruction label (or, for regular expressions, of thesymbols of the alphabet). Do not make assumptions that aretrue only of �xed types. Is your function general enough toapply to a fm<re<fm<set<string> > > >? If not, should yourethink the function?3. Remember to run the tests on all Grail �lters after you havemade your modi�cations.4. If you create important new functionality, consider making itavailable through a separate �lter. Follow the procedure thatwe described in the section on making �lters.It would be convenient if your additions to Grail are consistent withthe set of conventions Grail uses for �lenames. We use two-letter pre-�xes for �lters. Regular expression �lters use the pre�x re. Finite-state machine �lters use the pre�x fm. Finite language �lters use the65

pre�x fl. We also use these pre�xes as su�xes for commands thatconvert from one type of object to another; for example, retofm. 3Each class directory has a �le classname.h that contains theclass declaration. The string class, for instance, is declared in the�le string.h. This is the �rst place to look for information aboutthe class, since it contains declarations of all the methods.Each of the functions de�ned for a class is contained in a separatefunction.src �le. When the function is a function call with analphanumeric name, its �lename is the same name (for compatibilitywith non-exname �le systems, long function names are shortenedto �t an 8-character limit). Hence, the function parse in the classre is located in the �le parse.src. Since operator functions don'thave alphabetic names, we've chosen to use the following standardalphabetic names for operators:<< ostream.src>> istream.src< lt.src> gt.src== eq.src!= neq.src+= pluseq.src*= timeseq.src-= minuseq.src^= concat.src+ plus.src- minus.src[] index.srcWe use classname.src for constructors and �classname.srcfor destructors. Constants, macros, and types that are speci�c to aclass are kept in defs.h. The set of system and local �les that arenecessary for compilation of functions are speci�ed in include.h.3 All predicates begin with the pre�x is. This is likely to be changed in thefuture, because it does not distinguish between predicates for machines andpredicates for expressions, and because `is' is not the only type of predicatewe want to support. 66

miscellaneousSome odds and ends:1. Why do we use the su�x .src for our class code �les? Becausetoo many compilers make invalid inferences from su�xes like.c or .C. In some cases the compiler decides that the code isC rather than C++; in other cases, the compiler's templateinstantiation mechanism thinks that a .c �le with the samepre�x as the template's .h �le must be the template de�nition�le. Many C++ compilers allow you to specify your own su�xwith a command line option, but their template instantiationmechanisms do not always use this information. Consequently,we use a su�x that no one expects, #include all the �les intoa single class module, and use that as (part of) the compilableobject.2. Why do we include all �les in Grail in one single, monolithicmodule for compilation? In our experience, this is the fastestapproach to compiling Grail . Multiple modules mean multi-ple invocations of the compiler, with redundant processing ofmany common header �les. Another reason is that some C++compilers use the source �lename to construct an external en-try point for the destructor function for each class; this hasled to linking problems if the same �lename is used for someother class. The third reason is Grail 's heavy use of templates.With some compilers, separate compilation of templates in-volves a costly process in which each failure of the linker tolocate an instantiation of a needed template function causesthe compiler to be invoked to generate that function. Separatecompilation of Grail in such an environment can take over anhour. By producing a single module, we completely avoid theinteraction between linker and compiler, and we have seen ourcompile times drop to about �ve minutes.3. The class headers include an #ifdef to ensure that every classis de�ned only once. This hack should be avoidable by properuse of the #include facility, but it doesn't seem possible (theproblem may be due to how template instantiation works).67

4. The classes derived from subexp (empty set, empty string,cat exp, plus exp, symbol exp, and star exp) are accessedonly within re, and indeed should not even be visible outsidesubexp. Why then are these derived classes not nested withinsubexp? The reason is that some compilers don't implementnested classes within templates.5. Why haven't we made Grail work with GNU C++? The mainreason in the past was GNU's non-standard behavior and poortemplate support. The commercial compilers are better andmore reliable than GNU, at least for the moment.6. Some notes on compilation: On most UNIX machines Grailcompiles in two to three minutes, depending on load and com-pilation options. IBM's xlC on the RS/6000 550 and SGI'sDelta compiler on the Onyx/2 are the fastest environmentswe've used. xlC and Watcom 10.5 are tied for most robustcompiler; each is able to �nd errors that the other one won't,and both are much more strict than cfront-based compilers.If you're using Watcom 10.5, we strongly recommend thatyou do most of your compiling without the optimization ags-oneatx. Without these ags, Grail compiles in about twominutes on a 90 MHz Pentium with 16 Mbyte of EDO RAM;with optimization enabled, compiling takes as much as an hour.changes in version 2.5This section describes the changes and improvements made sinceVersion 2.4.1. Added test for self-assignment tobits::bits(const bits&).2. Plugged memory leak in copy constructors forcat_exp, plus_exp, star_exp.3. Removed copy() function member from re classes.68

4. Custom memory allocation for array class.5. pool class written, and re's allocation doneby pool.6. Batch copying in array::operator+=(const array&).7. `Destructive' copying in array::operator+=(array*).8. Used a bitmap to manage sets in fm:states().9. Fixed "make clean" in tests/Makefile.10. bits::next() written.11. bzero, bcmp, bcopy used instead of loops invarious functions.12. array:swap() written13. pool class written.14. Memory leaks in re fixed.15. re's parsing is now linear instead of quadratic(only one call to istrstream).16. Overgenerous memory allocation in array::operator=()fixed. (only allocate sz, not max)17. Variables in grail.C allocated at time of use,not at start of procedure.18. fmminrev need not take deterministic input.19. Old subset construction restored for machines withmore than 1000 states. 69

20. array assignment allocates only for sz, not formax, of the argument (much space was wasted if localarray variables were large).21. null_exp removed from re.22. fl class added.23. install_unix/install_dos dichotomy removed.24. makefile now uses wmake and DOS commands insteadof MKS make and Korn shell.25. fm::min_by_partition() and fm::enumerate nowremove unreachable states. Thanks to Makoto Muratafor bug reports.26. fm::member now properly handles empty strings.27. re_lambda and re/std.h removed as unused. Thanksto Wolfgang Frech for bug reports.28. retofm restored to mlychar and mlyint. Thanksto Wolfgang Frech for bug reports.changes in version 2.4This section describes the changes and improvements made sinceVersion 2.3.1. string, list, and set classes now derived fromarray class.2. Protected assignment operator in subexp.3. More extensive use of initialization lists invarious classes. 70

4. Added array::unsorted. This is needed if arraymembers are changed by an external object, as infm::reverse.5. No more need for LIST_SIZE and SET_SIZE defaults.6. bitmap class written and extensively profiled.7. bitmaps used in fm::subset8. Added test for argc before grail.C's call tofmenum9. template pair class, mealy class added. Oldpair class (non-template, fixed elements) removed.10. mlyint, mlychar directories created.11. string class given an explicit separator (i.e., acatenation operator symbol). */grail.h, */lexical.hmodified to define default and explicit separators.12. Many needlessly friendly iostream functions madeexternal to the classes they support.13. Redundant constructors for set, list, and stringeliminated.14. Erroneous calls to destructors removed from reclasses; deletes used instead.15. Memory-leaking constructions for cat_exp, plus_exp,star_exp, and null_exp plugged.16. Static variables removed from class re.17. Fixed up the file headers (we're not so71

university-specific now).18. Makefiles now move *.out into binaries directoryon invocation of compile, not install.19. Fixed string/istream.src.20. #ifdef for bits/set.src under cfront.21. Ran Purify to test for memory access errors.22. Ran Quantify to test for gratuitous inefficiences.changes in version 2.3This section describes the changes and improvements made sinceVersion 2.2.1. Fixed string/istream.src (again).2. Added xfmenum, xfmexec, xfmcross, xfmmin, xfmminrev,xfmcment, xfmcomp.3. Fixed bug in fm/catenate; was removing self-loops on startstates of argument machine.4. Fixed bug in retofm; was not incrementing state numberhigh enough (and thus generating self loops on nullexpression).5. Fixed bug in fm/catenate; was not making final state ofinvoking machine final if argument machine included emptystring.6. Added specialized set deletion that substitutes lastelement. 72

7. Split xfm stuff into separate directory; now usingdirectory `type' instead of `grail' (e.g., `char', `re',`pair', etc.)8. Added sorting and tests for sortedness to set.9. Added state::operator=(const state&).10. Substituted initialization for assignment in constructors(Myers #12).11. Return value of empty_set<S>::operator=() was subexp<S>&;changed to empty_set<S>& (Myers #15).12. fm data members made private.13. minor improvements made to re::fmtore14. -n flag added to fmenum.15. Makefiles improved for multiple architectures, multiplecompilers, multiple alphabet types.changes in version 2.2This section describes the changes and improvements made sinceVersion 2.1.1. New array class; set, list, and string are derived fromarray.2. Removed classes/Makefile and classes/*/Makefile; instead,we use #include and compile everything in one shot(thus avoiding long template instantiation and makefiledifferences across systems).3. fm altered to save start and final states explicitly.73

4. Redundant class members removed; small functions inlined;classes generally cleaned up.5. Removed grail/template.2 (not necessary with new #includestyle).6. Merged Makefile and Makefile.wat.7. Fixed bugs: fmexec did not handle 4-argument case correctly;string/istream.src read last character twice.Thanks to Jochen Seemann of the University of Wurzburg8. Added flags for static binding.9. Fixed profiler to use proper filter names (null profiles werebeing generated because filters had .pixie suffix).10. Added .EX, .EE macro definitions to top of each man page.11. Included Rational DOS extender.changes in version 2.1This section describes the changes and improvements made sinceVersion 2.0.1. Fixed bug in handling of istrstream for fmexec argumentsin fm.C.Thanks to Tillman Kolks of IMEC, Belgium2. Change loop index variable to "j" where "i" was being usedtwice in nested loops in fm::enumerate.Thanks to Tillman Kolks of IMEC, Belgium3. Fixed bug in min_by_partition; machines consisting of only74

final states should not be reduced to single-state machine.Thanks to Tillman Kolks of IMEC, Belgium4. Made sure fmrenum does not include unreachable states.Thanks to Tillman Kolks of IMEC, Belgium5. All classes/*/*.cc files moved to classes/*/*.src files,and Makefiles converted correspondingly. This change madeto support Sun CC template instantiation.Thanks to Scot Dyer, University of Nebraska-Lincoln6. -c argument to fmenum in grail/fm.C fixed.Thanks to Tillman Kolks of IMEC, Belgium7. Missing return statements added to grail/fm.C, grail/re.C, andgrail/fmre.C.8. inst::operator== changed to eliminate label test for start andfinal transitions. This necessitated changes to re:fmtore tohandle regular expressions on start and final transitions.9. grail/names.h and grail/dosnames.h added to permit compilationunder DOS.10. Makefile.wat added to various directories, for compilation underWatcom C++ 9.5.11. Changed argv[0] usages to my_name in grail/fm.C, grail/re.C,grail/fmre.C. Made executable name extraction work with bothUnix and DOS-style path delimiters.12. Fixed bug in fmstar (added too many final/start instructionsto clone state).13. Added test cases d7, d8. Renamed all test cases to work withinDOS-style file suffix limitations.75

changes in version 2.0This section describes the changes and improvements made sinceVersion 1.2.1. Converted fa and trans to template classes.2. Removed tset and xfa.3. Cleaned up directories and files.4. #ifdefs used to avoid duplicate definitions of classes(seems to be required by template instantiation mechanism)5. fa filters are all now symbolic links to one executablethat checks argv[0] to determine which operation to perform.6. state::number made private.7. Fixed trans comparison operators to avoid checking labelsfor pseudo-transitions.9. Removed fa::operator+=(trans&) (it had different semanticsfrom fa::operator+=(fa&), which could be confusing).10. Filters renamed to use "fm" prefix; fixed test cases.11. isomorph does its own renumbering and sorting now.12. Renamed "fa" class to "fm"; renamed "trans" class to "inst","regexp" class to "re".13. re class rewritten; new classes: empty_set, empty_string,cat_exp, plus_exp, star_exp, symbol_exp, subexp.14. re filters are all now symbolic links to one executablethat checks argv[0] to determine which operation to perform.76

15. xfm filters are all now symbolic links to one executablethat checks argv[0] to determine which operation to perform.16. Made string parameterized; altered usage of string wherenecessary to string<char>.17. Rewrote retofm and fmtore.18. Added various hacks to enable proper template instantiation(grail/template.1, grail/template.2, note changes in re.h)19. re now does not automatically "minimize" expressions; reminhas the "minimization" functionality.changes in version 1.2This section describes the changes and improvements made sinceVersion 1.0.1. Compiles under xlC 1.00, AT&T 3.0, Watcom C++ 9.5.2. Added set/gt.cc and set/lt.cc.3. string::operator+= reallocation changed so that blocksare always a power of 2. This seemed to fix a bugwhen running fatore on RS/6000.4. In string.h, fa.h, state.h, grail.h, use <iostream.h>instead of <stream.h>.5. Removed "form" from regexp/concat.cc, regexp/term.cc,regexp/token.c.6. End-of-function return values required for regexp/test*.cc.77

7. Removed duplicate xfaplus from grail/Makefile.8. Improved grail/Makefile to use default rules, removedunnecessary operations.9. Added "tempinc" to clean targets so that xlC recompilationproceeds correctly.10. set/include.h and list/include.h designed to handle thedefault requirements of xlC/Cfront template mechanisms(for xlC, you include the template header file, for Cfront,you don't).11. Added "XLC" and "ATT" defines to Makefile, tset.h.12. "delete [] p" removed from ~tset(). It incorrectly duplicatesthe functionality of ~set(), causes a crash under Watcom 9.5(discovered by Mark DeLaFranier of Watcom).13. mksys scripts written for list, set (to provide correctsuffixes for xlC and Cfront).14. Removed <libc.h>, substituted <stdlib.h>.15. All grail filters given "return 0" at end of main; allreturn values checked (and modified) for correctness.16. from_set and from_list made members of list and setrespectively.17. find_part removed from xfa.h.18. list::compare() only; removed compare from all other classes;compared contents of pointers instead of pointers.19. list::< and list::>.20. Removed print functions from set, tset, list; redefined78

ostream operators.21. converted Item::compare to list<Item>::compare in list::sort22. note that tset:operator<< second argument must be const.23. famin fixed; can't treat min_by_partition result as boolean.24. Added functions fa::deterministic_density, xfa::number_of_transitions,xfa::number_of_labels, xfa::number_of_states.25. For nfa's, faenum computes deterministic density andconverts to deterministic automata if appropriate.26. Purify'd. Fixed bugs in string::operator+=(const char*) andostream::<<(ostream&, regexp&).

79

