
Release Notes for GrailVersion 2.5Darrell Raymond1Roger Robson2March 19961 Department of Computer Science, University of Western Ontario, London,Canada2 Department of Electrical and Computer Engineering, University of Waterloo,Waterloo, Canada 81

table of contentsintroduction � 83performance � 83new classes � 84compilers � 90miscellaneous � 98list of changes � 99acknowledgements � 101

82

introductionThis document describes the changes and improvements in GrailVersion 2.5. Version 2.5 introduces �nite languages, custom memorymanagement schemes, and improved performance.This is not a complete description of Grail ; for that, consult otherparts of The Grail Papers. This document, and Grail itself, can befound at our Web site:http://www.csd.uwo.ca/research/grail.The main changes in Version 2.5 are as follows:1. Grail now includes support for �nite languages through theclass fl.2. There is improved memory usage (partly through the classpool), and hence improved e�ciency in a variety of areas.3. Grail can now be compiled with Symantec 7.0, IBM CSet++2.0, and Microsoft Visual C++ 2.0.4. The null exp class is no longer present.5. cfront 3.0.2 is still supported, but only just.6. Memory leaks in the regular expression classes have been �xed.These changes are discussed in more detail in the remainder of thisreport.performanceWe have spent some time improving the performance of Grail forlarge machines. Our motivation for working on this aspect of Grailis due to requests from a variety of computational linguists whowish to convert large dictionaries to �nite-state machines and thenmassage them.3Version 2.4 of Grail was e�ectively limited to machines of lessthan 10,000 states, or in other words, dictionaries of approximately3 We would particularly like to thank Franz Guenthner and Boubaker Meddeb-Hamrouni for their interest in Grail for these purposes.83

1000 words. Version 2.5 of Grail is better by an order of magnitude;it can handle machines in the range of 100,000 states and dictionariesof 20,000 words. This is still an order of magnitude less than what isneeded for large-scale natural language processing, so look for furtherimprovements in the future.Through pro�ling we learned that much of Grail 's time had beenspent in creating and destroying temporary arrays; many hundredsor thousands or arrays might be created and destroyed, even thoughonly a small number were ever in use at one time. Clearly, whatwas needed was a small pool of arrays that could be reused, and sowe added a mechanism to array that keeps a small bu�er of arraysavailable. This greatly reduces the need to allocate and free memory,leading to a substantial time savings.Version 2.5 also employs a scheme for custom memory manage-ment, based on the new class pool, which is described in greaterdetail in the next section. pool is used in Version 2.5 to manage reg-ular expressions, but it is a general-purpose memory managementclass that will probably see greater use in future versions of Grail .We eliminated several subtle problems that were resulting inmemorymismanagement. One interesting problem occurred becauseof the de�nition of array::operator=(const array&). In this rou-tine, the target array was reallocated to the maximum size of theargument array, on the assumption that the target array should haveas much room to expand as does the argument array. This actionproved to be particularly costly in situations where a single tempo-rary variable is used repeatedly to add elements to the array; if thetemporary variable had needed to be very large at some point in thepast, then its maximum size may be much larger than its currentsize, and this overhead is passed on to the target array. Removingthis overhead improved several routines.new classespoolThe class pool provides general-purpose dynamic memory manage-ment for classes that have large numbers of small objects. It is wellknown that C++ programs can be improved by an order of mag-84

nitude simply by using custom memory allocation rather than thedefault provided by new and delete. pool is our �rst attempt toprovide this kind of e�ciency in a general way in Grail .pool is a template class that manages a set of �xed arrays of itsargument type. The arrays are allocated according to powers of two.A new array is allocated only when all elements of smaller arraysare already in use. pool uses a bitmap to keep track of the elementsthat are in use. As elements are used, the bits in the bitmap are set;as elements are returned to the pool, the bits are cleared.In order to use pool with a given class, you must de�ne an in-stance of a pool for the class. Suppose you want cat exp<char> touse pool memory management. Then you would create a pool thisway: pool<cat_exp<char> > cat_pool;and overload new and delete for the class cat exp this way:void*cat_exp<char>::operator new(size_t){ return cat_pool.get_member();}voidcat_exp<char>::operator delete(void* p){ cat_pool.return_member(p);}pool will now take care of allocating blocks of cat exp<char>s.A memory management scheme for small objects should exhibit:1. fast new and delete2. bulk allocation of memory3. the ability to retrieve unused memory4. low fragmentation5. low overhead 85

pool provides us with most of these features. new and delete aremuch faster than the default, because pool simply manages pointersto existing memory; it does not allocate a new piece of memory forevery call to new, nor free it on every call to delete. Bulk allocationof memory is done: each new block that pool allocates is twice thesize of the previous block, and is allocated in one call. pool usesits bitmap to register any members that are returned to the pool,and will use any returned members before allocating new blocks ofmemory.pool can su�er from fragmentation, if for example every otherobject is returned to the pool. Fragmentation occurs because pooldoes not rearrange objects|once they are allocated, they stay put.The advantage of this is low overhead for using pools. If objectswere rearranged, then fragmentation could be avoided, but it wouldprobably necessitate additional overhead in determining the new ad-dresses for objects.One thing that pool does not do, which might be considereddesirable, is return whole blocks of memory to the heap if they areunused. Doing so is problematic. It is more costly, because we musttest for an unused blocks that may need to be returned. It's quitepossible that we would not actually free any memory, since if anysingle member of a block is in use, then that whole block cannot bereturned.4 Given that there are almost always fewer than 10 blocksin any pool (they are in increasing size, in powers of 2, starting at128), the odds are that most blocks would have some member in use.Thus, testing for an unused block probably simply adds nothing butoverhead to the system.It is sometimes possible to solve the problem of unused blocks inanother way. pool is carefully designed so that one can have morethan one pool for a given class (by making new and delete morecomplex). Thus, if one knows that memory will be used heavily inone part of a program, and then can be freed, one can arrange for thememory to be returned simply by using di�erent pools at di�erentpoints of the execution of a program.4 Unless we permitted rearranging blocks.86

flThe class fl describes a �nite language: that is, a language com-posed of a �nite number of �nite-length words. The internal storagemechanism for fl is a set<string<char> > that contains the enu-meration of the language. The input and output functions for flemploy a hardwired syntax that assumes newlines are used to de-limit words. This (or any other) �xed syntax is unacceptable ingeneral, but it was easy to implement for this release of Grail . An-other alternative is to permit user-de�ned delimiters, perhaps usingthe current Grail approach of user-de�ned delimiter variables. Weare generally unhappy with the current strategy for delimiter han-dling, partly because of the number of global variables and partlybecause there is no assistance given to ensure that con
icting delim-iters have not been chosen. We decided to use a simple solution forthe current implementation of fl, and develop a more general tech-nique for user-de�ned representations of all objects in future releasesof Grail .Several new �lters accompany the introduction of fl.fmto
 converts a �nite-state machine to a �nite language. Sincenot all �nite-state machines correspond to a �nite language,there is a check to ensure that an input machine is finite().The check for �niteness is accomplished by passing through themachine collecting reachable states and looking for repetitions.The conversion itself uses a similar algorithm, recording a wordwhenever a path reaches a �nal state.
tofm converts a �nite language to a �nite-state machine. Thisconversion is always possible. The generated machine has theform of a trie, and hence is deterministic, but usually non-minimal.
tore converts a �nite language to a regular expression. This con-version is always possible. The expression is not `minimal'.Given the following �nite language:adderaddend 87

sumsubtractthe resulting expression is adder+addend+sum+subtract andnot add(er+end)+su(m+btract).reto
 converts a regular expression to a �nite language. Only star-free regular expressions are �nite, and the �lter checks for star-freeness. One exception is permitted: any starred subexpres-sion that evaluates to the empty string is allowed.The conversion algorithm used is similar to the one used byretofm. For retofl, however, each subexpression is convertedto a �nite language instead of a submachine.
exec replicates the behaviour of fmexec, except that it does notaccept the -d switch, and it `executes' �nite languages insteadof �nite-state machines.
�lter accepts a �nite language and a �nite-state machine. The�lter outputs a language consisting of all words belonging to the�nite language which are accepted by the �nite-state machine.
prod returns the cross product of two �nite languages. The prod-uct of any �nite language with an empty language yields anempty language. The cross product of any string with theempty string yields the original string.
reverse reverses a �nite language. The �lter has no e�ect onempty languages or empty strings. A new member functionwas added to the string class to simplify the reversal code, andto make the string reversal functionality publicly available.
union returns the union of two �nite languages. Since a �nite lan-guage is a set of words, the �lter is implemented by performinga set union.
lq returns the left quotient of a �nite language and a string. Theleft quotient of a language L and a string x is de�ned as thelanguage of all words y such that xy is is L. The left quotientof any language L with the empty string yields the language L.88

The left quotient of the empty language and any string yieldsthe empty language.
rq returns the right quotient of a �nite language and a string. Thisis similar to the fllq �lter. The right quotient of a languageL and a string x is de�ned as the language of all words y suchthat yx is is L.
append appends a given string to every word in a �nite language.It is the equivalent of the fl fl�string operation. It is also,in a sense, the inverse of the left quotient operation. Appendinga string to the empty language yields the empty language.
prepen prepends a given string to every word in a �nite language.It is the equivalent of the fl string �fl operation. It is also,in a sense, the inverse of the right quotient operation.The automatic testing facility has been updated to include tests forall applicable �lters. The new tests entailed the creation of six �nitelanguage test objects, named l1 through l6. The following �ltershave no automatic tests:flexecflfilterflappendflprepenfllqflrqLittle attempt was made to optimize the time e�ciency of the �lters.No attempt has been made to extend the �nite language �ltersfor use with the mlychar, mlyint or re languages, due to the prob-lem with the stream operators. The functionality of flexec andflfilter should probably be modi�ed for the Mealy types, to allowoutput to be true Mealy output rather than simply the input strings.The following improvements and modi�cations to fl are recom-mended:1. The feasibility of storing the �nite languages internally as atrie or sorted list should be examined.89

2. The stream operators should be improved once the delimiterproblem has been solved. This will also allow extension toother languages as indicated above.3. Derick Wood recommends a shu�e operation for string andlanguages. Shu�ing two strings means interleaving their char-acters. Shu�ing two languages means a product of the twolanguages, in which words are shu�ed together instead of cate-nated.compilersThis section describes some of the peculiarities of particular compil-ers, and the techniques we have used to overcome them.cfrontIt is still possible to use cfront to compile Grail . We use version3.0.2, dated 12/01/92, on a Sparcstation 20 running SunOS Release4.1.3 U1.As noted in the Release notes for 2.4, cfront 3.0.2 confuses theclass set and the member function `set' in class bits, presumablybecause they both appear in the same (single) �le that constitutesthe Grail source code. We have left the #ifdefs that were put inplace in Version 2.4, but we will probably remove them in the nextrelease of Grail .A new problem introduced in Version 2.5 is due to the pool class.Because we want a single pool per class for cat exp, plus exp,star exp, and symbol exp, we normally have a static variable ineach class de�nition as follows:static pool<cat_exp<S> > cat_pool;C++ does not normally permit classes to contain members of theirown type, but it makes an exception for static members. In this case,the static member is actually a di�erent class parameterized by theclass type. It is perhaps not surprising that cfront can't recognizethat this is a legal construct.In order to use the pool class under cfront, we do not use thestatic de�nitions of the pools, and instead manually instantiate a90

pool for each parameterization of Grail . When used by cfront, the�le classes/re/memory.src contains the following:pool<cat_exp<char> > cat_pool;pool<plus_exp<char> > plus_pool;pool<star_exp<char> > star_pool;pool<symbol_exp<char> > symbol_exp;This solution is ugly but workable; it requires the programmer tomanually instantiate pools for regular expressions of each alphabetthat are to be used. Note that it does not have the same level ofencapsulation or robustness as the static solution.DCCWe compiled the SGI binaries with DCC under IRIX Release 5.3.This compiler needs no #ifdefs. Some points:1. DCC found several declared-but-unused variables that were notmentioned by other compilers.2. DCC mistakenly reported that q was used before it was set inthe following fragment of code:int q;for (k=-1;;k=q){ if ((q = inter.next(i)) == -1)break;..We do not ship a statically bound version of the SGI binaries, asthe machine we used to compile them did not have the appropriatelibrary.xlCWe compiled the RS6000 binaries with version 1.0 of xlC, on anRS/6000. There is one #ifdef for xlC in our code, in array/array.src:91

#ifndef XLCtemplate <class Item>int array<Item>::max_pool = 32;template <class Item>array<Item>* array<Item>::pool = (array<Item>*)new char[array<Item>::max_pool * sizeof(array<Item>)];#endif#ifdef XLCint max_pool = 32;template <class Item>array<Item>* array<Item>::pool = (array<Item>*)new char[max_pool * sizeof(array<Item>)];#endifxlC has a bit of a problem with recognizing the static class variablearray<Item>::max pool, so we have to make it an external variable.It would be desirable to have statically linked binaries for theRS/6000. Mike Whitney of the University of Victoria suggested us-ing the following
ags to produce a static executable:LDFLGS = -bnoso -bI:/lib/syscalls.exp -liconv -bnodelcsectWhen we have tried this in the past, it was reported that the resultswere not executable under some versions of AIX. The distributedRS/6000 binaries are, consequently, not statically compiled.Visual C++Version 1.52 of Visual C++ does not support templates, so it cannotcompileGrail . Version 2.0, which runs only under Windows NT, willcompile Grail . We found the following problems when compilingGrail under Version 2.0:1. Visual C++ requires explicit declarations of templated friendmember functions before the class de�nition is seen. This re-quired four declarations: 92

// in re\re.h#ifdef MSVCtemplate <class S> class re;template <class S>ostream&operator<<(ostream&, const re<S>&);template <class S>istream&operator>>(istream&, re<S>&);#endif// in fm\fm.h#ifdef MSVCtemplate <class Label> class fm;template <class Label>istream&operator>>(istream&, fm<Label>&);#endif// in inst\inst.h#ifdef MSVCtemplate <class Label> class inst;template <class Label>istream&operator>>(istream &, inst<Label>&);#endifNote that the re class required two declarations, and that ineach case a declaration of the class is necessary before the dec-laration of the friend function. MSVC was helpful when it �rst93

agged this error|it said explicitly what was required.2. MSVC did not like an explicit pointer/class member functionexpression in setpluseq.src. This was corrected by breaking up the expressionand using a temporary variable:#ifdef MSVCarray<Item>& tmp = *this;tmp+=q;// note: *this is changed because tmp is a// reference variable#elsethis->array<Item>::operator+=(q);#endif3. MSVC does not equate strstream.h with the DOS �lenamestrstrea.h, similarly to CSet. This was corrected by using an#ifdef.4. MSVC uses a di�erent signature for set new handler. In theirversion, the PF argument is an:int function(size_t)and not a:void function()This was corrected by including new.h, and modifying thenew error function (all protected by #ifdefs).5. fmreverse was not recognized. MSVC passes the �lter namewithout .EXE, and hence the nine-character name did not matchthe eight-character name passed from DOS.Makoto Murata of Fuji Xerox found that VC++ 2.0 required thesame #ifdefs as does cfront for the use of pools with regular ex-pressions; that is, VC++ 2.0 doesn't seem to understand the combi-nation of static data members and templates.94

Murata also notes that VC++ 2.0 doesn't seem to recognizeset new handler, even if new.h is included. His solution is to dothe following:#ifndef MSVCset_new_handler(&new_error); // error handler for new#endifGrail , as shipped, does not include changes or #ifdefs for VisualC++.Symantec 7.0Although it is possible to compile Grail 2.5 with Symantec 7.0, thechanges are substantial enough that we do not include them in thedelivered source code. For those who are using this compiler, here isa list of what needs to be done:1. Symantec will not compile properly unless all formal templateparameter names are identical. This does not apply to tem-plate parameter names for the mealy and pair classes. Thisis most easily accomplished by searching for Label and Item,and replacing with S. Also, inststd.h uses T as a parameter name.2. An explicit declaration oftemplate <class S>class inst<S>;template <class S>ostream&operator<<(ostream&, inst<S>&);is required in instinst.h before the inst class de�nition. Also, the followingmust be added to instostream.src:#include "../re/re.h"95

Although this is not required for the compilation process, lackof a de�nition for re thwarts the instantiation process.3. Explicit manual instantiations offm<char>::memberfm<re<char> >::memberare required to circumvent faulty function signature matchingin Symantec's compiler. Also, manual instantiations ofoperator>>(istream &, inst<char>)operator<<(ostream &, fm<re<char>>)are required to circumvent faulty instance-generation in thecompiler.4. Trailing tab characters must be removed from `cp' commandsin the Make�les.5. The arithmetic-if statements in bits/pluseq.src (line 13) andstring.h (line 51) must be edited to include super
uous brack-eting of the if-then and if-else arguments, because they containassignments.6. An explicit declaration oftemplate <class S>ostream&operator<<(ostream&, const fm<S>&);must be made in fm.h just prior to the fm class de�nition.CSet++ 2.0CSet had the following problems with Grail :1. CSet does not recognize strstream.h as an alias for the DOS-shortened strstrea.h. This occurs in grail.h and inst/inst.h.96

2. CSet su�ers from the same unusual include-path semantics asBorland; that is, the need to know all include directories asabsolute paths, rather than relative to the �le from which theyare included.3. CSet has a macro called max. During the initialization of arrayclass (in the constructor), the max data member is initialized onan initialization list. This syntax is misunderstood as a call tothe maxmacro. Moving the max initialization to an assignmentin the constructor body.4. An error was generated in array/sort. Apparently, CSet re-quires that the linkage type of functions passed by pointer ex-plicitly match that of its formal argument. In this case, thedefault CSet linkage speci�er, Optlink must be added.5. CSet generates an `informational" warning'regarding the useof static members in template classes. This warning gener-ally involves the exporting of such members from a library orcompilation unit. As such, they do not apply to the currentimplementation of Grail . A compiler switch can be used tosuppress `informational' warnings.6. CSet supports the unix convention of not adding .EXE to argv[0],and so uses names.h rather than dosnames.h.CSet++ can compile Grail 2.5 in under a minute on a Pentium/90with 16 Mbytes of EDO memory.WatcomGrail compiles successfully with Watcom 9.5, 10.0a, and 10.5. Wat-com has a number of problems with constructs that the other compil-ers passed without complaint. In particular, it groused about usinga cast in situations like this in set.h and list.h:#ifndef WATCOM{ (array<Item> &) *this = l; return *this; }#endif#ifdef WATCOM{ array<Item>::operator=(l); return *this; }97

#endifWatcomalso needed a special instantiation of string::operator>>in order to handle istrstreams (which should just be a derivationfrom the operator for istreams), and an explicit declaration andde�nition of mealy::operator<< (which should just be a derivationfrom the operator for fm).miscellaneousWe've used both Purify and Quantify fairly extensively on this ver-sion of Grail .We have removed all errors that we found having to do withmemory leaks, array bounds that were exceeded, and uninitializedmemory references. More precisely, we removed all UMRS that werein our code; there are some UMRs left over, but these are in theiostream library that is supplied with cfront 3.0.2, so there's notmuch we can do about those. A sample of these errors follows;UMR: Uninitialized memory read:* This is occurring while in:ios::flags(long) [libC.a]fstreambase::fstreambase() [libC.a]fstream::fstream() [libC.a]get_one(fm<char>&,int,char**,char*) [grail.o]main [grail.o]start [crt0.o]* Reading 4 bytes from 0xeffff7e4 on the stack.* Address 0xeffff7e4 is 20 bytes below frame pointerin function get_one(fm<char>&,int,char**,char*).Similaruninitializedmemory reads also occur in the following iostreamfunctions:ios::init(streambuf*) [libC.a]ios::precision(int) [libC.a]ios::fill(char) [libC.a]ios::tie(ostream*) [libC.a]ios::flags(long) [libC.a]98

list of changes1. Added test for self-assignment to bits::bits(const bits&).2. Plugged memory leak in copy constructors for cat_exp,plus_exp, star_exp.3. Removed copy() function member from re classes.4. Custom memory allocation for array class.5. pool class written, and re's allocation done by pool.6. Batch copying in array::operator+=(const array&).7. `Destructive' copying in array::operator+=(array*).8. Used a bitmap to manage sets in fm:states().9. Fixed "make clean" in tests/Makefile.10. bits::next() written.11. bzero, bcmp, bcopy used instead of loops in variousfunctions.12. array:swap() written.13. pool class written.14. Memory leaks in re fixed.15. re's parsing is now linear instead of quadratic (only onecall to istrstream).16. Overgenerous memory allocation in array::operator=() fixed(only allocate sz, not max).99

17. Variables in grail.C allocated at time of use, not at startof procedure.18. fmminrev need not take deterministic input.19. Bitmap subset construction removed.20. null_exp removed from re.21. fl class added.22. install_unix/install_dos dichotomy removed.23. makefile now uses wmake and DOS commands instead of MKSmake and Korn shell.24. fm::min_by_partition() and fm::enumerate now removeunreachable states. Thanks to Makoto Murata for bug reports.25. fm::member now properly handles empty strings.26. re_lambda and re/std.h removed as unused. Thanks toWolfgang Frech for bug reports.27. retofm restored to mlychar and mlyint. Thanks toWolfgang Frech for bug reports.28. mealy::dmember fixed to actually transduce instead ofjust copying the input stream. Thanks to Wolfgang Frech forbug reports.29. re::print should start with priority 0 (otherwise someKleene star expressions are done incorrectly). Thanks to WolfgangFrech for bug reports.30. array:merge function written.31. fm:reachable_states greatly improved. Thanks to Jonathan100

Buss for complaints.acknowledgementsThis research was �nancially supported by the Natural Sciences andEngineering Research Council of Canada. The production of theSGI and RS/6000 binaries 2 was done at the University of Water-loo. Our thanks to Frank Wm. Tompa and the Computer GraphicsLaboratory at the University of Waterloo for allowing us to use theirmachines.

101

