Release Notes for Grail

Version 2.5

Darrell Raymond*
Roger Robson?

March 1996

Department of Computer Science, University of Western Ontario, London,
Canada

Department of Electrical and Computer Engineering, University of Waterloo,
Waterloo, Canada

81

TABLE OF CONTENTS

INTRODUCTION
PERFORMANCE

NEW CLASSES
COMPILERS
MISCELLANEOUS

LIST OF CHANGES
ACKNOWLEDGEMENTS

83
83
84
90
98
99

101

82

INTRODUCTION

This document describes the changes and improvements in Gra:l
Version 2.5. Version 2.5 introduces finite languages, custom memory
management schemes, and improved performance.

This is not a complete description of Grail; for that, consult other
parts of The Grail Papers. This document, and Gra:l itself, can be
found at our Web site:

http://www.csd.uwo.ca/research/grail.
The main changes in Version 2.5 are as follows:

1. Grail now includes support for finite languages through the
class £1.

2. There is improved memory usage (partly through the class
pool), and hence improved efficiency in a variety of areas.

3. Grail can now be compiled with Symantec 7.0, IBM CSet++
2.0, and Microsoft Visual C4++ 2.0.

4. The null_exp class is no longer present.
5. cfront 3.0.2 is still supported, but only just.
6. Memory leaks in the regular expression classes have been fixed.

These changes are discussed in more detail in the remainder of this
report.

PERFORMANCE

We have spent some time improving the performance of Grail for
large machines. Our motivation for working on this aspect of Gra:l
is due to requests from a variety of computational linguists who
wish to convert large dictionaries to finite-state machines and then
massage them.3

Version 2.4 of Grail was effectively limited to machines of less
than 10,000 states, or in other words, dictionaries of approximately

3 We would particularly like to thank Franz Guenthner and Boubaker Meddeb-
Hamrouni for their interest in Gra:l for these purposes.

83

1000 words. Version 2.5 of Grail is better by an order of magnitude;
it can handle machines in the range of 100,000 states and dictionaries
of 20,000 words. This is still an order of magnitude less than what is
needed for large-scale natural language processing, so look for further
improvements in the future.

Through profiling we learned that much of Grail’s time had been
spent in creating and destroying temporary arrays; many hundreds
or thousands or arrays might be created and destroyed, even though
only a small number were ever in use at one time. Clearly, what
was needed was a small pool of arrays that could be reused, and so
we added a mechanism to array that keeps a small buffer of arrays
available. This greatly reduces the need to allocate and free memory,
leading to a substantial time savings.

Version 2.5 also employs a scheme for custom memory manage-
ment, based on the new class pool, which is described in greater
detaill in the next section. pool is used in Version 2.5 to manage reg-
ular expressions, but it is a general-purpose memory management
class that will probably see greater use in future versions of Grail.

We eliminated several subtle problems that were resulting in
memory mismanagement. One interesting problem occurred because
of the definition of array: :operator=(const array&). In this rou-
tine, the target array was reallocated to the maximum size of the
argument array, on the assumption that the target array should have
as much room to expand as does the argument array. This action
proved to be particularly costly in situations where a single tempo-
rary variable 1s used repeatedly to add elements to the array; if the
temporary variable had needed to be very large at some point in the
past, then its maximum size may be much larger than its current
size, and this overhead is passed on to the target array. Removing
this overhead improved several routines.

NEW CLASSES

pool

The class pool provides general-purpose dynamic memory manage-
ment for classes that have large numbers of small objects. It 1s well
known that C+4 programs can be improved by an order of mag-

84

nitude simply by using custom memory allocation rather than the
default provided by new and delete. pool is our first attempt to
provide this kind of efficiency in a general way in Gra:l.

pool is a template class that manages a set of fixed arrays of its
argument type. The arrays are allocated according to powers of two.
A new array is allocated only when all elements of smaller arrays
are already in use. pool uses a bitmap to keep track of the elements
that are in use. As elements are used, the bits in the bitmap are set;
as elements are returned to the pool, the bits are cleared.

In order to use pool with a given class, you must define an in-
stance of a pool for the class. Suppose you want cat_exp<char> to
use pool memory management. Then you would create a pool this
way:

pool<cat_exp<char> > cat_pool;
and overload new and delete for the class cat_exp this way:

void*
cat_exp<char>::operator new(size_t)
{

return cat_pool.get_member();

void
cat_exp<char>::operator delete(void* p)
{

cat_pool.return_member(p);

}

pool will now take care of allocating blocks of cat_exp<char>s.
A memory management scheme for small objects should exhibit:

1. fast new and delete

2. bulk allocation of memory

3. the ability to retrieve unused memory
4. low fragmentation

5. low overhead

85

pool provides us with most of these features. new and delete are
much faster than the default, because pool simply manages pointers
to existing memory; it does not allocate a new piece of memory for
every call to new, nor free it on every call to delete. Bulk allocation
of memory is done: each new block that pool allocates is twice the
size of the previous block, and is allocated in one call. pool uses
its bitmap to register any members that are returned to the pool,
and will use any returned members before allocating new blocks of
memory.

pool can suffer from fragmentation, if for example every other
object is returned to the pool. Fragmentation occurs because pool
does not rearrange objects—once they are allocated, they stay put.
The advantage of this is low overhead for using pools. If objects
were rearranged, then fragmentation could be avoided, but it would
probably necessitate additional overhead in determining the new ad-
dresses for objects.

One thing that pool does not do, which might be considered
desirable, 1s return whole blocks of memory to the heap if they are
unused. Doing so is problematic. It is more costly, because we must
test for an unused blocks that may need to be returned. It’s quite
possible that we would not actually free any memory, since if any
single member of a block 1s in use, then that whole block cannot be
returned.* Given that there are almost always fewer than 10 blocks
in any pool (they are in increasing size, in powers of 2, starting at
128), the odds are that most blocks would have some member in use.
Thus, testing for an unused block probably simply adds nothing but
overhead to the system.

It is sometimes possible to solve the problem of unused blocks in
another way. pool is carefully designed so that one can have more
than one pool for a given class (by making new and delete more
complex). Thus, if one knows that memory will be used heavily in
one part of a program, and then can be freed, one can arrange for the
memory to be returned simply by using different pools at different
points of the execution of a program.

4 Unless we permitted rearranging blocks.

86

fl

The class £1 describes a finite language: that is, a language com-
posed of a finite number of finite-length words. The internal storage
mechanism for £1 is a set<string<char> > that contains the enu-
meration of the language. The input and output functions for £1
employ a hardwired syntax that assumes newlines are used to de-
limit words. This (or any other) fixed syntax is unacceptable in
general, but it was easy to implement for this release of Grail. An-
other alternative is to permit user-defined delimiters, perhaps using
the current Grail approach of user-defined delimiter variables. We
are generally unhappy with the current strategy for delimiter han-
dling, partly because of the number of global variables and partly
because there is no assistance given to ensure that conflicting delim-
iters have not been chosen. We decided to use a simple solution for
the current implementation of £1, and develop a more general tech-
nique for user-defined representations of all objects in future releases
of Grail.

Several new filters accompany the introduction of £1.

fmtofl converts a finite-state machine to a finite language. Since
not all finite-state machines correspond to a finite language,
there is a check to ensure that an input machine is_finite().

The check for finiteness 1s accomplished by passing through the
machine collecting reachable states and looking for repetitions.
The conversion itself uses a similar algorithm, recording a word
whenever a path reaches a final state.

fltofm converts a finite language to a finite-state machine. This
conversion 1s always possible. The generated machine has the
form of a trie, and hence i1s deterministic, but usually non-
minimal.

fltore converts a finite language to a regular expression. This con-
version is always possible. The expression is not ‘minimal’.
Given the following finite language:

adder
addend

87

sum
subtract

the resulting expression is adder+addend+sum+subtract and
not add(er+end)+su(m+btract).

retofl converts a regular expression to a finite language. Only star-
free regular expressions are finite, and the filter checks for star-
freeness. One exception is permitted: any starred subexpres-
sion that evaluates to the empty string is allowed.

The conversion algorithm used is similar to the one used by
retofm. For retofl, however, each subexpression is converted
to a finite language instead of a submachine.

flexec replicates the behaviour of fmexec, except that it does not
accept the —-d switch, and 1t ‘executes’ finite languages instead
of finite-state machines.

fifilter accepts a finite language and a finite-state machine. The
filter outputs a language consisting of all words belonging to the
finite language which are accepted by the finite-state machine.

fiprod returns the cross product of two finite languages. The prod-
uct of any finite language with an empty language yields an
empty language. The cross product of any string with the
empty string yields the original string.

fireverse reverses a finite language. The filter has no effect on
empty languages or empty strings. A new member function
was added to the string class to simplify the reversal code, and
to make the string reversal functionality publicly available.

flunion returns the union of two finite languages. Since a finite lan-
guage is a set of words, the filter is implemented by performing
a set union.

fllq returns the left quotient of a finite language and a string. The
left quotient of a language L and a string x is defined as the
language of all words y such that xy is is L. The left quotient
of any language L with the empty string yields the language L.

88

The left quotient of the empty language and any string yields
the empty language.

flrq returns the right quotient of a finite language and a string. This
is similar to the £11q filter. The right quotient of a language
L and a string x is defined as the language of all words y such
that yx is is L.

flappend appends a given string to every word in a finite language.
It is the equivalent of the fl «— flxstring operation. It is also,
in a sense, the inverse of the left quotient operation. Appending
a string to the empty language yields the empty language.

flprepen prepends a given string to every word in a finite language.
It is the equivalent of the fl «— string* fl operation. It is also,
in a sense, the inverse of the right quotient operation.

The automatic testing facility has been updated to include tests for
all applicable filters. The new tests entailed the creation of six finite
language test objects, named 11 through 16. The following filters
have no automatic tests:

flexec
flfilter
flappend
flprepen
fllq
flrq

Little attempt was made to optimize the time efficiency of the filters.

No attempt has been made to extend the finite language filters
for use with the mlychar, mlyint or re languages, due to the prob-
lem with the stream operators. The functionality of flexec and
flfilter should probably be modified for the Mealy types, to allow
output to be true Mealy output rather than simply the input strings.

The following improvements and modifications to £1 are recom-
mended:

1. The feasibility of storing the finite languages internally as a
trie or sorted list should be examined.

89

2. The stream operators should be improved once the delimiter
problem has been solved. This will also allow extension to
other languages as indicated above.

3. Derick Wood recommends a shuffle operation for string and
languages. Shuffling two strings means interleaving their char-
acters. Shuffling two languages means a product of the two
languages, in which words are shuffled together instead of cate-
nated.

COMPILERS

This section describes some of the peculiarities of particular compil-
ers, and the techniques we have used to overcome them.

cfront

It is still possible to use cfront to compile Grail. We use version
3.0.2, dated 12/01/92, on a Sparcstation 20 running SunOS Release
4.1.3_U1.

As noted in the Release notes for 2.4, cfront 3.0.2 confuses the
class set and the member function ‘set’ in class bits, presumably
because they both appear in the same (single) file that constitutes
the Grail source code. We have left the #ifdefs that were put in
place in Version 2.4, but we will probably remove them in the next
release of Gra:l.

A new problem introduced in Version 2.5 is due to the pool class.
Because we want a single pool per class for cat_exp, plus_exp,
star_exp, and symbol_exp, we normally have a static variable in
each class definition as follows:

static pool<cat_exp<S> > cat_pool;

C++ does not normally permit classes to contain members of their
own type, but it makes an exception for static members. In this case,
the static member is actually a different class parameterized by the
class type. It is perhaps not surprising that cfront can’t recognize
that this 1s a legal construct.

In order to use the pool class under cfront, we do not use the
static definitions of the pools, and instead manually instantiate a

90

pool for each parameterization of Grail. When used by cfront, the
file classes/re/memory.src contains the following:

pool<cat_exp<char> > cat_pool;

pool<plus_exp<char> > plus_pool;
pool<star_exp<char> > star_pool;
pool<symbol_exp<char> > symbol_exp;

This solution is ugly but workable; it requires the programmer to
manually instantiate pools for regular expressions of each alphabet
that are to be used. Note that it does not have the same level of
encapsulation or robustness as the static solution.

DCC
We compiled the SGI binaries with DCC under IRIX Release 5.3.

This compiler needs no #ifdefs. Some points:

1. DCC found several declared-but-unused variables that were not
mentioned by other compilers.

2. DCC mistakenly reported that q was used before it was set in
the following fragment of code:

int q;
for (k=-1;;k=q)
{
if ((q = inter.next(i)) == -1)
break;

We do not ship a statically bound version of the SGI binaries, as
the machine we used to compile them did not have the appropriate
library.

x1C

We compiled the RS6000 binaries with version 1.0 of xIC, on an
RS/6000. There is one #ifdef for xIC in our code, in array/array.src:

91

#ifndef XLC
template <class Item>
int array<Item>::max_pool = 32;

template <class Item>
array<Item>#* array<Item>::pool = (array<Item>*)

new char[array<Item>::max_pool * sizeof(array<Item>)];
#endif

#ifdef XLC
int max_pool = 32;

template <class Item>

array<Item>#* array<Item>::pool = (array<Item>*)
new char[max_pool * sizeof(array<Item>)];

#endif

x1C has a bit of a problem with recognizing the static class variable
array<Item>::max_pool, so we have to make it an external variable.

It would be desirable to have statically linked binaries for the
RS/6000. Mike Whitney of the University of Victoria suggested us-
ing the following flags to produce a static executable:

LDFLGS = -bnoso -bI:/lib/syscalls.exp -liconv -bnodelcsect

When we have tried this in the past, it was reported that the results
were not executable under some versions of AIX. The distributed
RS/6000 binaries are, consequently, not statically compiled.

Visual C++

Version 1.52 of Visual C++4 does not support templates, so it cannot
compile Grail. Version 2.0, which runs only under Windows N'T, will
compile Grail. We found the following problems when compiling
Grail under Version 2.0:

1. Visual C++ requires explicit declarations of templated friend
member functions before the class definition is seen. This re-
quired four declarations:

92

// in re\re.h

#ifdef MSVC
template <class S> class re;

template <class S>
ostream&
operator<<(ostream&, const re<S>&);

template <class S>

istream&
operator>>(istream&, re<S>&);
#endif

// in fm\fm.h

#ifdef MSVC
template <class Label> class fm;

template <class Label>

istream&

operator>>(istream&, fm<Label>&);
#endif

// in inst\inst.h

#ifdef MSVC
template <class Label> class inst;

template <class Label>

istream&

operator>>(istream &, inst<Label>&);
#endif

Note that the re class required two declarations, and that in
each case a declaration of the class 1s necessary before the dec-
laration of the friend function. MSVC was helpful when it first

93

flagged this error—it said explicitly what was required.

. MSVC did not like an explicit pointer/class member function
expression in set

pluseq.src. This was corrected by breaking up the expression
and using a temporary variable:

#ifdef MSVC
array<Item>& tmp = *this;

tmp+=q;
// note: *this is changed because tmp is a
// reference variable
#else
this->array<Item>: :operator+=(q);
#endif

. MSVC does not equate strstream.h with the DOS filename
strstrea.h, similarly to CSet. This was corrected by using an
#ifdef.

. MSVC uses a different signature for set new_handler. In their
version, the PF argument is an:

int function(size_t)
and not a:
void function()

This was corrected by including new.h, and modifying the
new_error function (all protected by #ifdefs).

. Imreverse was not recognized. MSVC passes the filter name
without .EXE, and hence the nine-character name did not match
the eight-character name passed from DOS.

Makoto Murata of Fuji Xerox found that VC4++4 2.0 required the
same #ifdefs as does cfront for the use of pools with regular ex-

pressions; that is, VC++ 2.0 doesn’t seem to understand the combi-

nation of static data members and templates.

94

Murata also notes that VC4++4 2.0 doesn’t seem to recognize
set_new_ handler, even if new.h is included. His solution is to do
the following:

#ifndef MSVC
set_new_handler(&new_error); // error handler for new
#endif

Grail, as shipped, does not include changes or #ifdefs for Visual
C++.

Symantec 7.0

Although it is possible to compile Grail 2.5 with Symantec 7.0, the
changes are substantial enough that we do not include them in the
delivered source code. For those who are using this compiler, here is
a list of what needs to be done:

1. Symantec will not compile properly unless all formal template
parameter names are identical. This does not apply to tem-
plate parameter names for the mealy and pair classes. This
is most easily accomplished by searching for Label and Item,
and replacing with S. Also, inst
std.h uses T as a parameter name.

2. An explicit declaration of

template <class S>
class inst<S>;

template <class S>
ostream&
operator<<(ostream&, inst<S>&);

is required in inst
inst.h before the inst class definition. Also, the following

must be added to inst
ostream.src:

#include "../re/re.h"

95

Although this i1s not required for the compilation process, lack
of a definition for re thwarts the instantiation process.

3. Explicit manual instantiations of

fm<char>: :member
fm<re<char> >::member

are required to circumvent faulty function signature matching
in Symantec’s compiler. Also, manual instantiations of

operator>>(istream &, inst<char>)
operator<<(ostream &, fm<re<char>>)

are required to circumvent faulty instance-generation in the
compiler.

4. Trailing tab characters must be removed from ‘cp’ commands
in the Makefiles.

5. The arithmetic-if statements in bits/pluseq.src (line 13) and
string.h (line 51) must be edited to include superfluous brack-
eting of the if-then and if-else arguments, because they contain
assignments.

6. An explicit declaration of

template <class S>
ostream&
operator<<(ostream&, const fm<S>&);

must be made in fm.h just prior to the fm class definition.

CSet++ 2.0

CSet had the following problems with Gra:l:

1. CSet does not recognize strstream.h as an alias for the DOS-
shortened strstrea.h. Thisoccurs in grail.hand inst/inst.h.

96

2. CSet suffers from the same unusual include-path semantics as
Borland; that is, the need to know all include directories as
absolute paths, rather than relative to the file from which they
are included.

3. CSet has a macro called max. During the initialization of array
class (in the constructor), the max data member is initialized on
an initialization list. This syntax is misunderstood as a call to
the max macro. Moving the max initialization to an assignment
in the constructor body.

4. An error was generated in array/sort. Apparently, CSet re-
quires that the linkage type of functions passed by pointer ex-
plicitly match that of its formal argument. In this case, the
default CSet linkage specifier, Optlink must be added.

5. CSet generates an ‘informational” warning’regarding the use
of static members in template classes. This warning gener-
ally involves the exporting of such members from a library or
compilation unit. As such, they do not apply to the current
implementation of Grail. A compiler switch can be used to
suppress ‘informational’ warnings.

6. CSet supports the unix convention of not adding . EXE to argv [0],
and so uses names.h rather than dosnames.h.

CSet++ can compile Grail 2.5 in under a minute on a Pentium/90
with 16 Mbytes of EDO memory.

Watcom

Grail compiles successfully with Watcom 9.5, 10.0a, and 10.5. Wat-
com has a number of problems with constructs that the other compil-
ers passed without complaint. In particular, it groused about using
a cast in situations like this in set.h and list.h:

#ifndef WATCOM

{ (array<Item> &) #*this = 1; return *this; }
#endif
#ifdef WATCOM

{ array<Item>::operator=(1); return *this; }

97

#tendif

Watcom also needed a special instantiation of string: : operator>>
in order to handle istrstreams (which should just be a derivation
from the operator for istreams), and an explicit declaration and
definition of mealy: :operator<< (which should just be a derivation
from the operator for £m).

MISCELLANEOUS

We’ve used both Purify and Quantify fairly extensively on this ver-
sion of Grail.

We have removed all errors that we found having to do with
memory leaks, array bounds that were exceeded, and uninitialized
memory references. More precisely, we removed all UMRS that were
in our code; there are some UMRs left over, but these are in the
iostream library that is supplied with cfront 3.0.2, so there’s not
much we can do about those. A sample of these errors follows;

UMR: Uninitialized memory read:
*# This is occurring while in:
ios::flags(long) [1ibC.al
fstreambase::fstreambase() [1ibC.al
fstream::fstream() [1ibC.a]
get_one (fm<char>&, int ,char**,char*) [grail.o]
main [grail.ol
start [crt0.0]
* Reading 4 bytes from Oxeffff7e4 on the stack.
* Address Oxeffff7e4 is 20 bytes below frame pointer
in function get_one(fm<char>&,int,char*#*,char*).

Similar uninitialized memory reads also occur in the following iostream
functions:

ios::init(streambuf*) [1ibC.a]
ios::precision(int) [1ibC.a]
ios::fill(char) [1ibC.a]
ios::tie(ostream*) [1ibC.a]
ios::flags(long) [1ibC.al

98

LIST OF CHANGES

1. Added test for self-assignment to bits::bits(const bits&).

2. Plugged memory leak in copy constructors for cat_exp,
plus_exp, star_exp.

3. Removed copy() function member from re classes.

4. Custom memory allocation for array class.

5. pool class written, and re’s allocation done by pool.
6. Batch copying in array::operator+=(const array&).

7. ‘Destructive’ copying in array::operator+=(arrayx*).
8. Used a bitmap to manage sets in fm:states().

9. Fixed "make clean'" in tests/Makefile.

10. bits::next() written.

11. bzero, bcmp, bcopy used instead of loops in various
functions.

12. array:swap() written.
13. pool class written.
14. Memory leaks in re fixed.

156. re’s parsing is now linear instead of quadratic (only one
call to istrstream).

16. Overgenerous memory allocation in array::operator=() fixed
(only allocate sz, not max).

99

17. Variables in grail.C allocated at time of use, not at start
of procedure.

18. fmminrev need not take deterministic input.
19. Bitmap subset construction removed.

20. null_exp removed from re.

21. f1 class added.

22. install_unix/install_dos dichotomy removed.

23. makefile now uses wmake and DOS commands instead of MKS
make and Korn shell.

24. fm::min_by_partition() and fm::enumerate now remove
unreachable states. Thanks to Makoto Murata for bug reports.

25. fm::member now properly handles empty strings.

26. re_lambda and re/std.h removed as unused. Thanks to
Wolfgang Frech for bug reports.

27. retofm restored to mlychar and mlyint. Thanks to
Wolfgang Frech for bug reports.

28. mealy::dmember fixed to actually transduce instead of
just copying the input stream. Thanks to Wolfgang Frech for
bug reports.

29. re::print should start with priority O (otherwise some
Kleene star expressions are done incorrectly). Thanks to Wolfgang
Frech for bug reports.

30. array:merge function written.

31. fm:reachable_states greatly improved. Thanks to Jonathan

100

Buss for complaints.

ACKNOWLEDGEMENTS

This research was financially supported by the Natural Sciences and
Engineering Research Council of Canada. The production of the
SGI and RS/6000 binaries 2 was done at the University of Water-
loo. Our thanks to Frank Wm. Tompa and the Computer Graphics
Laboratory at the University of Waterloo for allowing us to use their
machines.

101

