
Grail: Engineering Automata in C++Version 2.5Darrell Raymond1Derick Wood2March 19961 Department of Computer Science, University of Waterloo, Waterloo, Canada2 Department of Computer Science, Hong Kong University of Science and Tech-nology, Kowloon, Hong Kong 1

table of contentsIntroduction � 3Features of Grail � 4Grail 's design � 7A short history of Grail � 10Related software systems � 15Some empirical lessons � 17How do I obtain Grail? � 18Acknowledgements � 18References � 19

2

introductionI saw the Holy Grail, All pall'd in crimson samite.Tennyson, Holy GrailThey seemed to seek some Hofbrauhaus of the spiritlike a grail, hold a krug of Munich beer like a chalice.T. Pynchon, VThis equipment can be used to counter heat-seekingmissiles such as the Soviet SA-7 Grail shoulder-�redweapon, now extensively deployed in Third Worldcountries. Daily Telegraph, Nov. 22, 1985We can't go doddering across Malaya behind an in-spired crackpot following the Holy Grail, can we?H.M. Tomlinson, Gallions ReachThe Edge was Fox's grail, that essential fraction ofsheer human talent, nontransferable, locked in theskulls of the world's hottest research scientists.W. Gibson, New Rose HotelGrail is a symbolic computation environment for �nite-state ma-chines, regular expressions, and �nite languages. Using Grail , onecan input machines or expressions, convert them from one form tothe other, minimize, determinize, complement, and perform manyother operations. Grail is intended for use in teaching, for researchinto the properties of machines, and for e�cient computation withmachines.This paper provides a basic introduction to Grail and describes3

some of its history and development. If you want to use Grail , youshould also consult the User's Guide to Grail and the man pagesfor the individual �lters. If you are installing Grail , or if you wantto write C++ programs that use Grail , consult the Programmer'sGuide to Grail and the Release Notes.Grail is written in C++. It can be accessed either through aprocess library or through a C++ class library. The process libraryis used much like other �lters; from a command shell, a user canexecute processes on �les or input streams, generating output thatcan be �ltered by other processes. The C++ class library can becompiled into applications that need direct access to Grail , or thatwish to minimize the costs of stream I/O.The name `grail' isn't necessarily an acronym, though it could be.In the past, we have sometimes suggested that Grail stands for some-thing like `Grammars, regular expressions, automata, languages'(we've never come up with something convincing for the i!). It'sprobably just as reasonable to think of our Grail experience as asearch for the hofbrauhaus of formal language theory.features of GrailVersion 2.5 ofGrail enables you to manipulate parameterizable �nite-state machines, regular expressions, and �nite languages. By `param-eterizable', we mean that the alphabet is not restricted to the usualtwenty-six letters and ten digits. Instead, all algorithms are writtenin a type-independent manner, so that any valid C++ base type andany user-de�ned type or class can be the alphabet of a �nite-statemachine, regular expression, or �nite language.Regular expressions in Grail use the conventional notation ofthe theoretical community. Grail supports catenation, union, andKleene star for regular expressions, along with parentheses to spec-ify precedence (complement is not supported). The following areexamples of regular expressions acceptable to Grail :a+b((a+bcde*)+c)*{}""+a 4

The expression fg denotes the empty set, and the expression ""denotes the empty string.The traditional representation for automata is the 5-tuple:< Q;�; �; s; F >where Q is the set of states, � is the input alphabet, � is a partialrelation � : Q � � ! fQg, s 2 Q is the start state, and F � Qis a set of �nal states. In Grail , we represent machines as sets ofinstructions. A machine that accepts the language ab, for example,is speci�ed by:(START) |- 00 a 11 b 22 -| (FINAL)Each instruction is a triple consisting of a source state, an instruc-tion symbol, and the corresponding target state. The start and �-nal states of the machine are indicated by means of special pseudo-instructions, whose labels are special symbols that can be thought ofas endmarkers on the input tape. The states (START) and (FINAL)are pseudo-states; they simply indicate that the other state in theinstruction is a start or �nal state. The set of (non-pseudo) instruc-tions is an enumeration of the instruction relation. The alphabet ofthe machine is given implicitly; it is the set of symbols that appear in(non-pseudo) instructions. Grail 's machines di�er from conventionalmachines in that we permit multiple start states as well as multiple�nal states. Grail 's machines are also parameterizable.A �nite language is simply a set of words (each of �nite length)constructed from the characters of the alphabet.To the user, Grail is a set of individual �lter programs that oper-ate on streams containing descriptions of �nite-state machines, reg-ular expressions, or �nite languages. Most �lters take a Grail object(that is, a �nite-state machine, regular expression, or �nite language)as input, and produce a Grail object as output. Objects can be en-tered directly from the keyboard or (more usually) redirected from�les. To convert a regular expression into a �nite-state machine, forexample, one might issue the following command:5

% echo "(a+b)*(abc)" | retofmwhose output would be(START) |- 40 a 12 b 30 a 00 a 22 b 02 b 24 a 14 a 04 a 24 b 34 b 04 b 21 a 63 a 64 a 68 c 106 b 810 -| (FINAL)The �lter retofm converts an input regular expression into a non-deterministic �nite-state machine, which it prints on its standardoutput. This output can be the input for another �lter; for exam-ple, a �lter that converts the machine back into a regular expression(folded here to �t onto the page):% echo "(a+b)*(abc)" | retofm | fmtore((aa*a+ba*a+a+b)(b+ba*a)*ba*aab+aab+aa*aab+ab+ba*aab+((aa*a+ba*a+a+b)(b+ba*a)*b+b)ab)cFor those who want to avoid the cost of I/O implicit in the useof the �lter approach, Grail can also be accessed directly as a C++library. The above �lter command% echo "(a+b)*(abc)" | retofm | fmtorecan also be written directly in C++:6

#include "grail.h"main(){ re<char> r;char* example = "(a+b)*(abc)\n";istrstream(example, strlen(example)) >> r;r.fmtore(r.retofm());cout << r << endl;}In the above program, the istrstream function is used to convertan internal string into input to be read as a regular expression; theretofm function converts the expression into a machine, and thefmtore function converts it back to an expression.Grail 's algorithms are independent of the type of the alphabetde�ned. We can have, for example, machines whose alphabet is the(in�nite) set of ordered pairs of integers:(START) |- 00 [1,2] 11 [2,2] 11 [3,4] 22 -| (FINAL)Each of Grail 's �lters can be compiled to work with this symbolset; thus, we can convert such a machine to a regular expression (ofordered pairs), enumerate its language (which is a set of strings ofordered pairs), and so on.Grail 's designMost tools for working with machines and expressions are designedfor a speci�c application, such as program parsing. Grail , on theother hand, is designed to be a general-purpose package for symboliccomputation with machines and expressions. We intend for Grail to(eventually) �ll all of the following needs:7

� researchGrail should facilitate the theoretical and practical investiga-tion of machines and expressions, and the development of newalgorithms for processing them. Grail has already been usefulin investigating the properties of subset construction (Leslie92).� educationGrail should facilitate teaching about machines. In part, itshould do this by making it easier to experiment with machines,but we also hope that Grail will add a leavening of engineeringto a subject that is mostly taught as theoretical mathematics.Grail has already been used for undergraduate teaching.� applicationGrail should facilitate the use of machines in solving appliedproblems, such as protocol testing, embedded state machines,executing concurrent processes, parsing, string searching, andany other application that can be described by machines or ex-pressions. Users of Grail have employed it for grammar trans-duction and natural language processing.The key theme of Grail 's design is modularity. We seek modu-larity not just because it is the generally accepted route to a goodsoftware design, but because we expect that adding new facilities toGrail and developing new uses for Grail will be the most commonactivity of both its users and its designers. Modularity in Grail arisesin four important areas:� philosophyOther approaches to software for machines assume that min-imal, deterministic machines are the desired end result of allprocessing. In Grail we do not make this assumption; we treatmachines, languages, and expressions as equal �rst-class ob-jects. Programmers will �nd in Grail a collection of useful toolsand a number of ways to connect the tools to address new andinteresting problems in formal language theory. Moreover, we8

intend to make many algorithms and implementations of algo-rithms accessible withinGrail , both the (apparently) ine�cientas well as the e�cient, in order to facilitate experimentationand study, as well as to generate test cases.� process-based softwareInstead of developing yet another language for writing ma-chine programs, Grail is based on a set of individual processesthat can be accessed by any command shell or any programthat is capable of launching processes. Processes are mod-ules whose encapsulation is enforced by the operating system;a process-based approach encourages programmers to developsimple, generally-applicable tools. A second advantage of thisapproach is that it is easy to distribute computation; by us-ing the capabilities of rsh to set up internet pipes, we canrun processes on di�erent machines. A third advantage is thata process-based approach separates language issues from ma-chines processing. It also leverages users' knowledge of shellprogramming; rather than requiring users to learn a new lan-guage, users can exploit sh, csh, ksh, bash, perl, and many otherlanguages.� textual interchangeA multiple-process design requires some form of interprocesscommunication, since processes cannot access each others' data.We use a textual description of machines and regular expres-sions as the intermediary for Grail . Each process reads a tex-tual description of the input machine, converts it into an in-ternal form, processes it, and writes a textual description ofan output machine. The advantage of this approach is thatthe input and output can be read, edited, and manipulated bystandard utilities such as vi, sort and wc. The disadvantageis the extra cost of encoding and decoding between the lan-guage and internal forms, and the cost of process invocationand switching. In our experience, this cost is small comparedto the cost of (for example) converting between objects or pro-ducing minimized machines.� C++ class library 9

C++ encourages encapsulation and the de�nition of interfaces,and hence encourages modularity in low-level code. In addi-tion, we make extensive use of template classes, which in e�ectde�ne operations on `black boxes' that are ready to be instan-tiated with the user's choice of modules.Grail 's 41 �lters are listed in Table 1.a short history of GrailGrail was preceded by two packages written at the University ofWaterloo. The earlier e�ort was Leiss's REGPACK (Leiss 79), a pack-age written in 1977 to support experimentation and research with�nite-state machines. REGPACK, written in SPITBOL, supported theconversion of nondeterministic machines to deterministic machines,minimization of deterministic machines, and construction of syntac-tic monoids. While REGPACK did not directly inuence the currente�ort, it is interesting to note that Leiss's goal of an environment forexperimentation with machines is still one of our primary goals.A program with more direct inuence on Grail was Howard John-son's INR (Johnson 86). INR was developed because of Johnson'sinterest in rational relations and their use in de�ning string simi-larity (Johnson 83). INR takes rational relations (including regularexpressions) as input and converts them into �nite-state machines,which can then be manipulated in various ways. INR can producesingle- or multiple-tape machines; the latter are useful for describingtransducers, since one tape can be considered an output tape for theother (input) tapes.Johnson made special e�orts to ensure that INR was a highly ef-�cient and powerful tool for managing machines. His goal was thee�ective processing of machines with thousands of states and instruc-tions. As a result, INR is written very compactly in C, and is espe-cially e�cient in handling potentially costly tasks such as memoryallocation, subset construction, and minimization of machines. Thebasic algorithms for handling such tasks are well known, but therehas been relatively little attention paid to e�cient implementationof these algorithms. Johnson made the e�ort to develop e�cient im-plementations, with the result that INR was the only software system10

fmcment complement a machinefmcomp complete a machinefmcat catenate two machinesfmcross cross product of two machinesfmdeterm make a machine deterministicfmenum enumerate strings in the language of a machinefmexec execute a machine on a given stringfmmin minimize a machine by Hopcroft's methodfmminrev minimize a machine by reversalfmplus plus of a machinefmreach reduce a machine to reachable states andinstructionsfmrenum canonical renumbering of a machinefmreverse reverse a machinefmstar star of a machinefmstats print information about a machinefmto convert a machine to a �nite languagefmtore convert a machine to regular expressionfmunion union of two machinesappend append a given string to every wordexec execute a �nite language on a given string�lter �nd intersection of �nite language and �nite-statemachinelq left quotientprepen prepend a given string to every wordprod cross product of two �nite languagesreverse reverse words in a �nite languagerq right quotienttofm convert a �nite language to a �nite-state machinetore convert a �nite language to a regular expressionunion union of two �nite languagesiscomp test a machine for completenessisdeterm test a machine for determinismisomorph test two machines for isomorphismisuniv test a machine for universalityisempty test for equivalence to empty setisnull test for equivalence to empty stringrecat catenate two regular expressionsremin minimal bracketing of a regular expressionrestar Kleene star of a regular expressionretofm convert a regular expression to a machinereto convert a regular expression to a �nite languagereunion union of two regular expressionsTable 1.1: Grail �lters11

capable of handling the transduction of the Oxford English Dictio-nary (Kazman 86). Even today, many of INR's capabilities are moreadvanced than those of other software (though we like to think thatGrail is catching up). The present e�ort has borrowed INR's philos-ophy of combining powerful capabilities with e�cient design, as wellas its notation for machines.The �rst project to actually use the name `Grail' was a joint e�ortbetween Howard Johnson, Carl-Johan Seger, and Derick Wood. Thisproject extended INR to handle context-free grammars and machineswith regular expressions as instruction labels. Software developedfor this project consisted of a layer of code that used INR as anunderlying computational engine. After some work, this e�ort wasdiscontinued.The Grail project was resuscitated by the present authors in 1990.We began with the observation that some issues were not satisfacto-rily handled either by INR or `old Grail.' The �rst issue was obscurity.In pursuit of e�ciency, INR had become a somewhat complex andmonolithic piece of code. The layer of software added by `old Grail'merely increased the complexity, because it was not easily main-tainable or modi�able. The lack of documentation for INR and `oldGrail' made this software di�cult to understand for anyone otherthan its programmers. Thus, the �rst order of business was to de-velop software that was more approachable and better documented,to improve maintainability and robustness, and to ensure that manyprogrammers could work on the software.The second issue was modularity. Much of the di�culty of build-ing upon INR was a result of its tightly connected structure. Addinga new algorithm for subset construction, for example, required know-ing much about the internals of INR, including its data structures,memory allocation, parser, and so on. We wanted a software en-vironment in which programmers could work on algorithms withouthaving to learn too much about the details of the existing code. Thismeant that we would have to build the software in a modular fashion,devising interfaces at several levels.The third issue was generality. Like most systems that have ap-peared since, INR assumed that the user wanted to input regularexpressions and receive deterministic, minimized machines as out-put. INR did not support the user who wanted to input machines12

and produce regular expressions as output. We wanted Grail to be ageneral purpose manipulation language, in which one could convertmachines and expressions freely, with user control over minimizationand determinism.Grail version 0.5 was written in C, and consisted of the following�lters:cross compute the cross product of two machineslreverse reverse the input using empty-string instructionsmin minimize the input by Hopcroft's partition algorithmmin1 minimize the input by reversal and subset constructionpercent compute the alternation (i.e. (ab)+) of two machinesplus compute star�� of the machinequest compute the machine+�reverse reverse the input machinestar compute the Kleene star of the input machinesubset subset construction of the input machineunion compute the union of two machinesThese �lters accessed a library of functions that did most of theactual work (the �lters themselves were essentially simple I/O rou-tines). The library contained procedures for handling I/O and forprocessing machines. The idea behind this decomposition was thatthe �lters should be e�cient enough for most problems involvingmachines; for very large or complex problems, a competent C pro-grammer could access the library directly and thereby avoid anyine�ciency introduced by process communication.While the �lters were reasonably successful, the library was not.Our C code was not particularly reliable, readable, or reusable. Thislatter problem was irritating both aesthetically and as a pure engi-neering problem. Operations on machines and regular expressionsinvolve frequent manipulation of container structures such as setsand relations; it would be both elegant and e�cient to use a sin-gle implementation of these structures for many di�erent contents.Using C, however, one can provide this generality only by givingup strict type checking. In spite of these problems, version 0.5 didsupport a signi�cant research project on subset construction (Leslie92). 13

We decided to switch to C++ to re-implement Grail . We madethis choice of language under the impression that we would developan elegant class hierarchy that would greatly increase code reuse andthe overall robustness of the system. While we have made some useof clases, C++ has been much more important for its better clarityand robustness, which are a result of its strict type checking andencapsulation. C++'s template facility is indispensable to Grail ,and recent versions of the software have made more extensive use ofinheritance and virtual functions.Versions 0.8 through 1.2 ofGrail saw the development of our C++class library, which included the classes set, list, string, regexp,trans (transition), state, fa, tset (sets of transitions), and xfa(extended �nite machine). This latter class de�nes machines thathave regular expressions as transition labels. The set and listclasses are template classes; they and xfa were our �rst attempt torely on C++'s ability to support code reuse. In addition to rewritingour existing code in C++, we also added more functionality{thenumber of �lters jumped from 11 to 34. Version 1.0 introduced anautomatic testing facility that was used to check that changes to codestill resulted in working �lters. Version 1.1 introduced an automaticpro�ling facility that was used to test that purported improvementsactually did lead to more e�cient code. Version 1.2 was subjected toquality checks, both through the use of Purify and through correctingthe bugs and inconsistencies that were discovered by compiling thecode with two C++ compilers that are more strict than cfront.Version 2 of Grail added support for parameterizable machinesand expressions. Parameterizable �nite-state machines can take anytype as instruction label, and parameterizable regular expressionscan take any type as a symbol class. Version 2 thus dispenses withthe distinction between xfa and fa (each is an instance of the newparameterizable machine class fm), and has extended the reach ofthe regexp class (now called re) beyond strings of ASCII alphabeticcharacters. Version 2 also dispenses with the class tset and makesstring a parameterized class.The most recent version of Grail is Version 2.5. This versionintroduces a class for �nite languages (fl) and for memory allocation(pool), and exhibits improved performance for large machines.14

related software systemsRecently, several systems for computing with machines have ap-peared in the literature or have been made available over the In-ternet.Bruce Watson has written a C++ toolkit for �nite-state machinesand regular expressions called the FIRE Engine (Watson 94a, 94b).This package has the goals of e�ciency and modularity, and imple-ments more algorithms than does Grail . The FIRE Engine does notcome with a non-programmer interface, such as Grail 's �lters.Champarnaud's AUTOMATE system, written in C, supports�nite-state machines and �nite semigroups (Champarnaud and Hansel91). It can compute deterministic minimalmachines, syntactic monoids,and transition monoids of regular languages.The AMORE system, written in C, supports �nite-state ma-chines, regular expressions, and syntactic monoids (Jansen et al. 90).It can produce minimal DFAs, handle �-NFAs, and perform varioustests on syntactic monoids (for example, star-freeness, �niteness, andco�niteness). AMORE can also display its machines graphically.Both AMORE and AUTOMATE have goals similar to those ofGrail|to serve as a research environment, to facilitate the studyof machine implementations, and to provide a package for execut-ing machines for other purposes (such as validating concurrent pro-grams). Where Grail di�ers is in its emphasis on providing a fullsymbolic computing environment; in its provision of both �lters anda class library; and in the fact that Grail does not attempt to provideits own graphical user interface or programming language. AMOREand AUTOMATE appear to be monolithic programs that attemptto provide a single interface to the user.One use of machines is for hardware veri�cation and protocolchecking. FANCY, the Finite AutomatoN Checker of nancY, isStefan Krischer's tool for formal hardware veri�cation. It providesequivalence and inclusion checking for �nite-state machines and isaccessible through a graphical user interface.FADELA, the Finite AutomatonDEbugging LAnguage, is a projectdirected by Gjalt de Jong (van der Zanden 90). FADELA is designedto investigate !-regular languages (that is, regular languages whosewords are of in�nite length). FADELA supports the production of15

deterministic M�uller machines, and can convert these machines intoregular expressions. FADELA also supports other operations on ma-chines including minimization and complement.An interesting experience is the development of machine tools inNuprl, a proof language based on the lambda calculus (Kreitz 86).De�nitions were constructed in Nuprl for �nite sets, strings, tuples,and deterministic machines. Nuprl was then able to construct aproof of the pumping lemma. The main point of this work was notthe development of an environment for manipulating machines, butan illustration of the utility of the Nuprl proof development system.We know of several other systems whose motivation is primarilypedagogical. An early e�ort was GRAMPA, which was only par-tially implemented (Barnes 72). More recently, Hannay has built aHypercard-based system for simulating machines (Hannay 92). Thisprogram appears to be useful for introductory teaching purposes,and for simulating small machines. FLAP, the Formal Languagesand Automata Package, comes from Rensselaer Polytechnic Insti-tute. FLAP supports the drawing and execution of �nite-state ma-chines, pushdown machines and Turing machines. FLAP can han-dle nondeterministic machines, provides the ability to step throughthe execution of a machine, and supports paper output (LoSaccoand Rodger 93). The COLOS project at the University of Milanhas a system called AUTOMATA, which permits students to workwith �nite-state automata, push-down automata, Mealy and Mooremachines, regular expressions, and context-free grammars. It in-cludes an X windows interface. Finally, Turing's World is a programfor teaching the basics of �nite-state machines and Turing machines(Barwise and Etchemendy 93). This program's strength is a nicegraphical interface to the machines.In addition to these systems, there is a vast amount of workon using grammars and machines in applications. Many operat-ing system utilities understand a limited form of regular expression,for example, and almost every text editor provides general-purposesearch-and-replace capabilities. The machines used in such tools aregenerally custom built, or perhaps adapted from custom code; op-erating systems have yet to o�er a standard machine package forhandling parameterizable machines and expressions in the same waythat they o�er parameterizable sorting and searching routines.16

some empirical lessonsDevelopingGrail has taught us much about implementingalgorithmsfor �nite-state machines. C++ is an important contributor to therobustness of the code, mainly because of strict type checking. TheC++ compiler has resisted many questionable constructs that wereunquestioningly accepted by C. Consequently, programming bugsand errors less frequently show up in low-level operations. Whenbugs do appear, they are now almost always incorrect speci�cationsof algorithms.Grail has also taught us some lessons that apply to the construc-tion of mathematical libraries in general. One lesson is that a libraryof routines is only half the battle; the other half is in developing a li-brary of test data, and in the provision of a mechanism for automatictesting and performance evaluation. In the early stages of develop-ment, Grail 's �lters were tested with simple machines and the resultswere checked by hand. As the pace of development increased, how-ever, this was no longer su�cient; one cannot very well test tens ofprograms on each of several test cases by hand, and one cannot testvery large machines or expressions by hand at all, since the proba-bility of a manual error in checking soon becomes higher than theprobability of an error in the code. Thus, it becomes necessary toautomate testing. Automation is also essential in performance evalu-ation, which relies on large inputs in order to thoroughly exercise thecode. One approach to generating large test cases is to apply �ltersthat generate non-isomorphicmachines that are language equivalent.Repeatedly converting between machine and regular expression, forexample, will result in a large machine that accepts a known lan-guage. Hence, the result of processing such a machine can be testedby minimizing and comparing it to the known minimal machine.Another related tactic is to repeatedly take the cross product of anondeterministic machine with itself; there will be an exponentialblowup in the size of the result, which is still language equivalentwith the original.A second important lesson is that a sound theoretical understand-ing of an algorithm is not the same as a sound implementation. Toparaphrase a popular saying, a little knowledge of worst-case perfor-mance is a dangerous thing. Algorithms that have bad worst case17

performance may be quite acceptable for most practical uses. Sub-set construction, in particular, is exponential in the worst case, butempirical study shows that the number of machines that exhibit thisbehaviour is small (Leslie 92). Moreover, it appears to be predictablefrom the input whether an exponential result is likely to occur. Sincemost users do not want to store or further use exponential output,predicting this result may be su�cient. Another instance of this be-havior is reported by Bruce Watson, who notes that Brzozowski'salgorithm for minimization (applying reversal and subset construc-tion twice) performs better than Hopcroft's algorithm in practice,even though worst-case analysis of the two algorithms suggests theopposite (Watson 95).On the other hand, a sloppy implementation of a well-known al-gorithm with reasonable average case performance may be unaccept-able for every large input. Linear-time algorithms can easily becomequadratic-time if careful attention is not paid to problems such asthe proper management of sets.how do i obtain Grail?Grail is available without charge to researchers and students, or any-one who wishes to use the software for their own private education.Version 2.5 of Grail can be obtained from the Grail project's WorldWide Web site, athttp://www.csd.uwo.ca/research/grailThis site also contains links to many other automata research projects.Grail is not in the public domain. It cannot be sold, used forcommercial purposes, or included as part of a commercial productwithout our permission.acknowledgementsThis research was supported by a grant from the Natural Sciencesand Engineering Research Council of Canada. Darrell Raymond canbe reached at drraymon@csd.uwo.ca. Derick Wood can be reachedat dwood@cs.ust.hk. 18

referencesBarnes 72 K.R. Barnes, Exploratory Steps Towards a GrammaticalManipulation Package (GRAMPA) M.Sc. Thesis, McMasterUniversity, Hamilton, Canada (1972).Barwise and Etchemendy 93 J. Barwise, J. Etchemendy, Tur-ing's World 3.0: An Introduction to Computability Theory,Center for the Study of Language and Information, Stanford,California (1993).Champarnaud and Hansel 91 J.M. Champarnaud, G. Hansel,\AUTOMATE: A Computing Package for Automata and Fi-nite Semigroups", Journal of Symbolic Computation 12 p. 197-220 (1991).Hannay 92 D.G. Hannay, \Hypercard Automata Simulation: Finite-State, Pushdown, and Turing Machines", SIGSCE Bulletin24(2) p. 55-58 (June 1992).Jansen et al. 90 V. Jansen, A. Pottho�, W. Thomas, U. Wermuth,\A Short Guide to the AMORE System",Aachener Informatik-Berichte 90(02), Lehrstuhl f�ur Informatik II, Universit�at Aachen,Aachen, Germany (January 1990).Johnson 86 J.H. Johnson, \INR: A Program for Computing FiniteAutomata" unpublished manuscript, Department of ComputerScience, University of Waterloo, Waterloo, Canada (January1986).Johnson 83 J.H. Johnson, \Formal Models for String Similarity",CS-83-32 Department of Computer Science, University of Wa-terloo, Waterloo, Canada (November 1983).Kazman 86 R. Kazman, \Structuring the Text of the Oxford En-glish Dictionary Through Finite State Transduction", CS-86-20, Department of Computer Science, University of Waterloo,Waterloo, Canada (June 1986).Kreitz 86 C. Kreitz, \Constructive AutomataTheory Implementedwith the Nuprl Proof Development System", TR-86-779, De-19

partment of Computer Science, Cornell University, Ithaca, NewYork (September 1986).Leiss 77 E. Leiss, \REGPACK: An Interactive Package for RegularLanguages and Finite Automata", CS-77-32, Department ofComputer Science, University of Waterloo, Waterloo, Canada(October 1977).Leslie 92 T.K.S. Leslie, \E�cient Approaches to Subset Construc-tion", CS-92-29, Department of Computer Science, Universityof Waterloo, Waterloo, Canada (April 1992).LoSacco and Rodger 93 M. LoSacco, S. Rodger, \FLAP: A Toolfor Drawing and SimulatingAutomata"ED-MEDIA 93, WorldConference on Educational Multimedia and Hypermedia p. 310-317 (June 1993).van der Zanden 90 J.G.N.M. van der Zanden, FADELA: FiniteAutomata DEbugging LAnguage, Master's thesis, Departmentof Electrical Engineering, Eindhoven University of Technology,Eindhoven, The Netherlands (August 1990).Watson 94a B.W. Watson, \An Introduction to the FIRE Engine:A C++ Toolkit for Finite Automata and Regular Expressions",Computing Science Note 94/21, Department of Mathematicsand Computing Science, Eindhoven University of Technology,Eindhoven, The Netherlands (April 1994).Watson 94b B.W. Watson, \The Design and Implementation ofthe FIRE Engine: A C++ Toolkit for Finite Automata andRegular Expressions", Computing Science Note 94/22, Depart-ment of Mathematics and Computing Science, Eindhoven Uni-versity of Technology, Eindhoven, The Netherlands (April 1994).Watson 95 B.W. Watson, \Taxonomies and Toolkits of RegularLanguage Algorithms", Ph.D. Thesis, Eindhoven University ofTechnology, Eindhoven, The Netherlands (1995).20

