Grail: Engineering Automata in C++4

Version 2.5

Darrell Raymond*
Derick Wood?

March 1996

1 Department of Computer Science, University of Waterloo, Waterloo, Canada
2 Department of Computer Science, Hong Kong University of Science and Tech-
nology, Kowloon, Hong Kong

TABLE OF CONTENTS

Introduction

Features of Grail

Grail’s design

A short history of G'rail
Related software systems
Some empirical lessons
How do I obtain Grail?
Acknowledgements
References

INTRODUCTION

I saw the Holy Grail, All pall’d in crimson samite.

Tennyson, Holy Grazil

They seemed to seek some Hofbrauhaus of the spirit
like a grail, hold a krug of Munich beer like a chalice.

T. Pynchon, V

This equipment can be used to counter heat-seeking
missiles such as the Soviet SA-7 Grail shoulder-fired
weapon, now extensively deployed in Third World
countries.

Daily Telegraph, Nov. 22, 1985

We can’t go doddering across Malaya behind an in-
spired crackpot following the Holy Grail, can we?

H.M. Tomlinson, Gallions Reach

The Edge was Fox’s grail, that essential fraction of
sheer human talent, nontransferable, locked in the
skulls of the world’s hottest research scientists.

W. Gibson, New Rose Hotel

Grail is a symbolic computation environment for finite-state ma-
chines, regular expressions, and finite languages. Using Gra:il, one
can input machines or expressions, convert them from one form to
the other, minimize, determinize, complement, and perform many
other operations. Grail is intended for use in teaching, for research
into the properties of machines, and for efficient computation with
machines.

This paper provides a basic introduction to Grail and describes

3

some of its history and development. If you want to use Gra:l, you
should also consult the User’s Guide to Grail and the man pages
for the individual filters. If you are installing G'ra:il, or if you want
to write C4++4 programs that use Grail, consult the Programmer’s
Guide to Grail and the Release Notes.

Grail is written in C+4. It can be accessed either through a
process library or through a C++ class library. The process library
is used much like other filters; from a command shell, a user can
execute processes on files or input streams, generating output that
can be filtered by other processes. The C++ class library can be
compiled into applications that need direct access to Grail, or that
wish to minimize the costs of stream I/0.

The name ‘grail” isn’t necessarily an acronym, though it could be.
In the past, we have sometimes suggested that Gra:l stands for some-
thing like ‘Grammars, regular expressions, automata, languages’
(we’ve never come up with something convincing for the il). Tt’s
probably just as reasonable to think of our Grail experience as a
search for the hofbrauhaus of formal language theory.

FEATURES OF Grail

Version 2.5 of G'rail enables you to manipulate parameterizable finite-
state machines, regular expressions, and finite languages. By ‘param-
eterizable’, we mean that the alphabet is not restricted to the usual
twenty-six letters and ten digits. Instead, all algorithms are written
in a type-independent manner, so that any valid C+4 base type and
any user-defined type or class can be the alphabet of a finite-state
machine, regular expression, or finite language.

Regular expressions in Grail use the conventional notation of
the theoretical community. Grail supports catenation, union, and
Kleene star for regular expressions, along with parentheses to spec-
ify precedence (complement is not supported). The following are
examples of regular expressions acceptable to Grail:

atb
((at+bcde*)+c)*
8

LIRS Y

The expression {} denotes the empty set, and the expression ""
denotes the empty string.
The traditional representation for automata is the b-tuple:

<Q, X, 6,8 F >

where () is the set of states, ¥ is the input alphabet, § is a partial
relation é : @ x X — {Q}, s € @ is the start state, and F C @
i1s a set of final states. In G'rail, we represent machines as sets of
instructions. A machine that accepts the language ab, for example,
is specified by:

(START) |- 0
0alt
1b2
2 -| (FINAL)

Each instruction is a triple consisting of a source state, an instruc-
tion symbol, and the corresponding target state. The start and fi-
nal states of the machine are indicated by means of special pseudo-
wnstructions, whose labels are special symbols that can be thought of
as endmarkers on the input tape. The states (START) and (FINAL)
are pseudo-states; they simply indicate that the other state in the
instruction is a start or final state. The set of (non-pseudo) instruc-
tions is an enumeration of the instruction relation. The alphabet of
the machine is given implicitly; it is the set of symbols that appear in
(non-pseudo) instructions. Grail’s machines differ from conventional
machines in that we permit multiple start states as well as multiple
final states. Gra:’s machines are also parameterizable.

A finite language is simply a set of words (each of finite length)
constructed from the characters of the alphabet.

To the user, Grail is a set of individual filter programs that oper-
ate on streams containing descriptions of finite-state machines, reg-
ular expressions, or finite languages. Most filters take a Gra:l object
(that is, a finite-state machine, regular expression, or finite language)
as input, and produce a Grail object as output. Objects can be en-
tered directly from the keyboard or (more usually) redirected from
files. To convert a regular expression into a finite-state machine, for
example, one might issue the following command:

% echo "(a+b)*(abc)" | retofm
whose output would be

(START) |- 4
1

®
O OONO WNORNOINO W

D 0B W R DR R DN O O N O
-
o

oo ® p p OO O O T T P O

8
10 -| (FINAL)

The filter retofm converts an input regular expression into a non-
deterministic finite-state machine, which it prints on its standard
output. This output can be the input for another filter; for exam-
ple, a filter that converts the machine back into a regular expression
(folded here to fit onto the page):

% echo "(a+b)*(abc)" | retofm | fmtore
((aa*atba*atat+b) (b+ba*a)*ba*aab+aabtaa*aab+ab+baraab+
((aa*atba*ata+b) (b+ba*a)*b+b)ab)c

For those who want to avoid the cost of I/O implicit in the use
of the filter approach, Grail can also be accessed directly as a C++
library. The above filter command

% echo "(a+b)*(abc)" | retofm | fmtore
can also be written directly in C++:

6

#include "grail.h"

main()

{
re<char> r;
char* example = "(at+b)*(abc)\n";
istrstream(example, strlen(example)) >> r;
r.fmtore(r.retofm());
cout << r << endl;

}

In the above program, the istrstream function is used to convert
an internal string into input to be read as a regular expression; the
retofm function converts the expression into a machine, and the
fmtore function converts it back to an expression.

Grail’s algorithms are independent of the type of the alphabet
defined. We can have, for example, machines whose alphabet is the
(infinite) set of ordered pairs of integers:

(START) |- 0
0 [1,2] 1
1 [2,2] 1
1 [3,4] 2
2 -| (FINAL)

Each of Grail’s filters can be compiled to work with this symbol
set; thus, we can convert such a machine to a regular expression (of
ordered pairs), enumerate its language (which is a set of strings of
ordered pairs), and so on.

Grail’s DESIGN

Most tools for working with machines and expressions are designed
for a specific application, such as program parsing. Grail, on the
other hand, is designed to be a general-purpose package for symbolic
computation with machines and expressions. We intend for Grail to
(eventually) fill all of the following needs:

7

e research

Grail should facilitate the theoretical and practical investiga-
tion of machines and expressions, and the development of new
algorithms for processing them. Grail has already been useful
in investigating the properties of subset construction (Leslie

92).

e education

Grail should facilitate teaching about machines. In part, it
should do this by making it easier to experiment with machines,
but we also hope that Grail will add a leavening of engineering
to a subject that is mostly taught as theoretical mathematics.
Grail has already been used for undergraduate teaching.

e application

Grail should facilitate the use of machines in solving applied
problems, such as protocol testing, embedded state machines,
executing concurrent processes, parsing, string searching, and
any other application that can be described by machines or ex-
pressions. Users of Grail have employed it for grammar trans-
duction and natural language processing.

The key theme of Grail’s design is modularity. We seek modu-
larity not just because it is the generally accepted route to a good
software design, but because we expect that adding new facilities to
Grail and developing new uses for Grail will be the most common
activity of both its users and its designers. Modularity in Gra:l arises
in four important areas:

e philosophy

Other approaches to software for machines assume that min-
imal, deterministic machines are the desired end result of all
processing. In Grail we do not make this assumption; we treat
machines, languages, and expressions as equal first-class ob-
jects. Programmers will find in Gra:l a collection of useful tools
and a number of ways to connect the tools to address new and
interesting problems in formal language theory. Moreover, we

intend to make many algorithms and implementations of algo-
rithms accessible within Grail, both the (apparently) inefficient
as well as the efficient, in order to facilitate experimentation
and study, as well as to generate test cases.

e process-based software

Instead of developing yet another language for writing ma-
chine programs, Grail is based on a set of individual processes
that can be accessed by any command shell or any program
that is capable of launching processes. Processes are mod-
ules whose encapsulation is enforced by the operating system:;
a process-based approach encourages programmers to develop
simple, generally-applicable tools. A second advantage of this
approach is that it is easy to distribute computation; by us-
ing the capabilities of rsh to set up internet pipes, we can
run processes on different machines. A third advantage is that
a process-based approach separates language issues from ma-
chines processing. It also leverages users’ knowledge of shell
programming; rather than requiring users to learn a new lan-
guage, users can exploit sh, csh, ksh, bash, perl, and many other
languages.

e textual interchange

A multiple-process design requires some form of interprocess
communication, since processes cannot access each others’ data.
We use a textual description of machines and regular expres-
sions as the intermediary for Grail. Each process reads a tex-
tual description of the input machine, converts it into an in-
ternal form, processes 1t, and writes a textual description of
an output machine. The advantage of this approach is that
the input and output can be read, edited, and manipulated by
standard utilities such as wi, sort and we. The disadvantage
is the extra cost of encoding and decoding between the lan-
guage and internal forms, and the cost of process invocation
and switching. In our experience, this cost is small compared
to the cost of (for example) converting between objects or pro-
ducing minimized machines.

e C++ class library

C++ encourages encapsulation and the definition of interfaces,
and hence encourages modularity in low-level code. In addi-
tion, we make extensive use of template classes, which in effect
define operations on ‘black boxes’ that are ready to be instan-
tiated with the user’s choice of modules.

Grail’s 41 filters are listed in Table 1.

A SHORT HISTORY OF Grail

Grail was preceded by two packages written at the University of
Waterloo. The earlier effort was Leiss’s REGPACK (Leiss 79), a pack-
age written in 1977 to support experimentation and research with
finite-state machines. REGPACK, written in SPITBOL, supported the
conversion of nondeterministic machines to deterministic machines,
minimization of deterministic machines, and construction of syntac-
tic monoids. While REGPACK did not directly influence the current
effort, it is interesting to note that Leiss’s goal of an environment for
experimentation with machines is still one of our primary goals.

A program with more direct influence on Gra:l was Howard John-
son’s INR (Johnson 86). INR was developed because of Johnson’s
interest in rational relations and their use in defining string simi-
larity (Johnson 83). INR takes rational relations (including regular
expressions) as input and converts them into finite-state machines,
which can then be manipulated in various ways. INR can produce
single- or multiple-tape machines; the latter are useful for describing
transducers, since one tape can be considered an output tape for the
other (input) tapes.

Johnson made special efforts to ensure that INR was a highly ef-
ficient and powerful tool for managing machines. His goal was the
effective processing of machines with thousands of states and instruc-
tions. As a result, INR is written very compactly in C, and is espe-
cially efficient in handling potentially costly tasks such as memory
allocation, subset construction, and minimization of machines. The
basic algorithms for handling such tasks are well known, but there
has been relatively little attention paid to efficient implementation
of these algorithms. Johnson made the effort to develop efficient im-
plementations, with the result that INR was the only software system

10

fmement
fmecomyp
fmeat
fmecross
fmdeterm
fmenum
fmezec
fmman
fmmainrev
fmplus
fmreach

fmrenum
fmreverse
fmstar
fmstats
fmtofl
fmtore
fmunion
flappend
flexec

fifilter

Mg
flprepen
flprod
flreverse
flrg
fltofm
fltore
flunion
1scomp
1sdeterm
1somorph
1SUNIY
1sempty
wsnull
recat
remin
restar
retofm
retofl
TEUNION

complement a machine

complete a machine

catenate two machines

cross product of two machines

make a machine deterministic

enumerate strings in the language of a machine
execute a machine on a given string

minimize a machine by Hopcroft’s method
minimize a machine by reversal

plus of a machine

reduce a machine to reachable states and
instructions

canonical renumbering of a machine

reverse a machine

star of a machine

print information about a machine

convert a machine to a finite language

convert a machine to regular expression

union of two machines

append a given string to every word

execute a finite language on a given string

find intersection of finite language and finite-state
machine

left quotient

prepend a given string to every word

cross product of two finite languages

reverse words in a finite language

right quotient

convert a finite language to a finite-state machine
convert a finite language to a regular expression
union of two finite languages

test a machine for completeness

test a machine for determinism

test two machines for isomorphism

test a machine for universality

test for equivalence to empty set

test for equivalence to empty string

catenate two regular expressions

minimal bracketing of a regular expression
Kleene star of a regular expression

convert a regular expression to a machine
convert a regular expression to a finite language
union of two regular expressions

Table 1.1: Grail filters

capable of handling the transduction of the Ozford English Dictio-
nary (Kazman 86). Even today, many of INR’s capabilities are more
advanced than those of other software (though we like to think that
Grail is catching up). The present effort has borrowed INR’s philos-
ophy of combining powerful capabilities with efficient design, as well
as its notation for machines.

The first project to actually use the name ‘Grail’ was a joint effort
between Howard Johnson, Carl-Johan Seger, and Derick Wood. This
project extended INR to handle context-free grammars and machines
with regular expressions as instruction labels. Software developed
for this project consisted of a layer of code that used INR as an
underlying computational engine. After some work, this effort was
discontinued.

The Grail project was resuscitated by the present authors in 1990.
We began with the observation that some issues were not satisfacto-
rily handled either by INR or ‘old Grail.” The first issue was obscurity.
In pursuit of efficiency, INR had become a somewhat complex and
monolithic piece of code. The layer of software added by ‘old Grail’
merely increased the complexity, because it was not easily main-
tainable or modifiable. The lack of documentation for INR and ‘old
Grail” made this software difficult to understand for anyone other
than its programmers. Thus, the first order of business was to de-
velop software that was more approachable and better documented,
to improve maintainability and robustness, and to ensure that many
programmers could work on the software.

The second 1ssue was modularity. Much of the difficulty of build-
ing upon INR was a result of its tightly connected structure. Adding
a new algorithm for subset construction, for example, required know-
ing much about the internals of INR, including its data structures,
memory allocation, parser, and so on. We wanted a software en-
vironment in which programmers could work on algorithms without
having to learn too much about the details of the existing code. This
meant that we would have to build the software in a modular fashion,
devising interfaces at several levels.

The third i1ssue was generality. Like most systems that have ap-
peared since, INR assumed that the user wanted to input regular
expressions and receive deterministic, minimized machines as out-
put. INR did not support the user who wanted to input machines

12

and produce regular expressions as output. We wanted Grail to be a
general purpose manipulation language, in which one could convert
machines and expressions freely, with user control over minimization
and determinism.

Grail version 0.5 was written in C, and consisted of the following
filters:

cross compute the cross product of two machines
lreverse reverse the input using empty-string instructions

min minimize the input by Hoperoft’s partition algorithm
mini minimize the input by reversal and subset construction
percent compute the alternation (i.e. (ab)™) of two machines
plus compute star—e of the machine

quest compute the machine+e

reverse reverse the input machine

star compute the Kleene star of the input machine
subset subset construction of the input machine

union compute the union of two machines

These filters accessed a library of functions that did most of the
actual work (the filters themselves were essentially simple 1/0 rou-
tines). The library contained procedures for handling I/O and for
processing machines. The idea behind this decomposition was that
the filters should be efficient enough for most problems involving
machines; for very large or complex problems, a competent C pro-
grammer could access the library directly and thereby avoid any
inefficiency introduced by process communication.

While the filters were reasonably successful, the library was not.
Our C code was not particularly reliable, readable, or reusable. This
latter problem was irritating both aesthetically and as a pure engi-
neering problem. Operations on machines and regular expressions
involve frequent manipulation of container structures such as sets
and relations; it would be both elegant and efficient to use a sin-
gle implementation of these structures for many different contents.
Using C, however, one can provide this generality only by giving
up strict type checking. In spite of these problems, version 0.5 did
support a significant research project on subset construction (Leslie

92).

13

We decided to switch to C4++4 to re-implement Grail. We made
this choice of language under the impression that we would develop
an elegant class hierarchy that would greatly increase code reuse and
the overall robustness of the system. While we have made some use
of clases, C+4 has been much more important for its better clarity
and robustness, which are a result of its strict type checking and
encapsulation. C+4’s template facility is indispensable to Grail,
and recent versions of the software have made more extensive use of
inheritance and virtual functions.

Versions 0.8 through 1.2 of Grail saw the development of our C++
class library, which included the classes set, list, string, regexp,
trans (transition), state, fa, tset (sets of transitions), and xfa
(extended finite machine). This latter class defines machines that
have regular expressions as transition labels. The set and list
classes are template classes; they and xfa were our first attempt to
rely on C4++’s ability to support code reuse. In addition to rewriting
our existing code in C++4, we also added more functionality—the
number of filters jumped from 11 to 34. Version 1.0 introduced an
automatic testing facility that was used to check that changes to code
still resulted in working filters. Version 1.1 introduced an automatic
profiling facility that was used to test that purported improvements
actually did lead to more efficient code. Version 1.2 was subjected to
quality checks, both through the use of Purify and through correcting
the bugs and inconsistencies that were discovered by compiling the
code with two C4++4 compilers that are more strict than cfront.

Version 2 of Grail added support for parameterizable machines
and expressions. Parameterizable finite-state machines can take any
type as instruction label, and parameterizable regular expressions
can take any type as a symbol class. Version 2 thus dispenses with
the distinction between xfa and fa (each is an instance of the new
parameterizable machine class fm), and has extended the reach of
the regexp class (now called re) beyond strings of ASCIT alphabetic
characters. Version 2 also dispenses with the class tset and makes
string a parameterized class.

The most recent version of Grail 1s Version 2.5. This version
introduces a class for finite languages (£1) and for memory allocation
(pool), and exhibits improved performance for large machines.

14

RELATED SOFTWARE SYSTEMS

Recently, several systems for computing with machines have ap-
peared in the literature or have been made available over the In-
ternet.

Bruce Watson has written a C4++ toolkit for finite-state machines
and regular expressions called the FIRE Engine (Watson 94a, 94b).
This package has the goals of efficiency and modularity, and imple-
ments more algorithms than does Grail. The FIRE Engine does not
come with a non-programmer interface, such as Grail’s filters.

Champarnaud’s AUTOMATE system, written in C, supports
finite-state machines and finite semigroups (Champarnaud and Hansel
91). Tt can compute deterministic minimal machines, syntactic monoids,
and transition monoids of regular languages.

The AMORE system, written in C, supports finite-state ma-
chines, regular expressions, and syntactic monoids (Jansen et al. 90).
It can produce minimal DFAs, handle ¢-NFAs, and perform various
tests on syntactic monoids (for example, star-freeness, finiteness, and
cofiniteness). AMORE can also display its machines graphically.

Both AMORE and AUTOMATE have goals similar to those of
Grail—to serve as a research environment, to facilitate the study
of machine implementations, and to provide a package for execut-
ing machines for other purposes (such as validating concurrent pro-
grams). Where Grail differs is in its emphasis on providing a full
symbolic computing environment; in its provision of both filters and
a class library; and in the fact that Grail does not attempt to provide
its own graphical user interface or programming language. AMORE
and AUTOMATE appear to be monolithic programs that attempt
to provide a single interface to the user.

One use of machines is for hardware verification and protocol
checking. FANCY, the Finite AutomatoN Checker of nancY, is
Stefan Krischer’s tool for formal hardware verification. It provides
equivalence and inclusion checking for finite-state machines and is
accessible through a graphical user interface.

FADELA, the Finite Automaton DEbugging LAnguage, is a project
directed by Gjalt de Jong (van der Zanden 90). FADELA is designed
to investigate w-regular languages (that is, regular languages whose
words are of infinite length). FADELA supports the production of

15

deterministic Miuller machines, and can convert these machines into
regular expressions. FADELA also supports other operations on ma-
chines including minimization and complement.

An interesting experience is the development of machine tools in
Nuprl, a proof language based on the lambda calculus (Kreitz 86).
Definitions were constructed in Nuprl for finite sets, strings, tuples,
and deterministic machines. Nuprl was then able to construct a
proof of the pumping lemma. The main point of this work was not
the development of an environment for manipulating machines, but
an illustration of the utility of the Nuprl proof development system.

We know of several other systems whose motivation is primarily
pedagogical. An early effort was GRAMPA, which was only par-
tially implemented (Barnes 72). More recently, Hannay has built a
Hypercard-based system for simulating machines (Hannay 92). This
program appears to be useful for introductory teaching purposes,
and for simulating small machines. FLAP, the Formal Languages
and Automata Package, comes from Rensselaer Polytechnic Insti-
tute. FLAP supports the drawing and execution of finite-state ma-
chines, pushdown machines and Turing machines. FLAP can han-
dle nondeterministic machines, provides the ability to step through
the execution of a machine, and supports paper output (LoSacco
and Rodger 93). The COLOS project at the University of Milan
has a system called AUTOMATA, which permits students to work
with finite-state automata, push-down automata, Mealy and Moore
machines, regular expressions, and context-free grammars. It in-
cludes an X windows interface. Finally, Turing’s World is a program
for teaching the basics of finite-state machines and Turing machines
(Barwise and Etchemendy 93). This program’s strength is a nice
graphical interface to the machines.

In addition to these systems, there is a vast amount of work
on using grammars and machines in applications. Many operat-
ing system utilities understand a limited form of regular expression,
for example, and almost every text editor provides general-purpose
search-and-replace capabilities. The machines used in such tools are
generally custom built, or perhaps adapted from custom code; op-
erating systems have yet to offer a standard machine package for
handling parameterizable machines and expressions in the same way
that they offer parameterizable sorting and searching routines.

16

SOME EMPIRICAL LESSONS

Developing Grail has taught us much about implementing algorithms
for finite-state machines. C++ is an important contributor to the
robustness of the code, mainly because of strict type checking. The
C++ compiler has resisted many questionable constructs that were
unquestioningly accepted by C. Consequently, programming bugs
and errors less frequently show up in low-level operations. When
bugs do appear, they are now almost always incorrect specifications
of algorithms.

G'rail has also taught us some lessons that apply to the construc-
tion of mathematical libraries in general. One lesson is that a library
of routines is only half the battle; the other half is in developing a li-
brary of test data, and in the provision of a mechanism for automatic
testing and performance evaluation. In the early stages of develop-
ment, Grail’s filters were tested with simple machines and the results
were checked by hand. As the pace of development increased, how-
ever, this was no longer sufficient; one cannot very well test tens of
programs on each of several test cases by hand, and one cannot test
very large machines or expressions by hand at all, since the proba-
bility of a manual error in checking soon becomes higher than the
probability of an error in the code. Thus, it becomes necessary to
automate testing. Automation is also essential in performance evalu-
ation, which relies on large inputs in order to thoroughly exercise the
code. One approach to generating large test cases is to apply filters
that generate non-isomorphic machines that are language equivalent.
Repeatedly converting between machine and regular expression, for
example, will result in a large machine that accepts a known lan-
guage. Hence, the result of processing such a machine can be tested
by minimizing and comparing it to the known minimal machine.
Another related tactic is to repeatedly take the cross product of a
nondeterministic machine with itself; there will be an exponential
blowup in the size of the result, which is still language equivalent
with the original.

A second important lesson is that a sound theoretical understand-
ing of an algorithm is not the same as a sound implementation. To
paraphrase a popular saying, a little knowledge of worst-case perfor-
mance is a dangerous thing. Algorithms that have bad worst case

17

performance may be quite acceptable for most practical uses. Sub-
set construction, in particular, is exponential in the worst case, but
empirical study shows that the number of machines that exhibit this
behaviour is small (Leslie 92). Moreover, it appears to be predictable
from the input whether an exponential result is likely to occur. Since
most users do not want to store or further use exponential output,
predicting this result may be sufficient. Another instance of this be-
havior is reported by Bruce Watson, who notes that Brzozowski’s
algorithm for minimization (applying reversal and subset construc-
tion twice) performs better than Hopcroft’s algorithm in practice,
even though worst-case analysis of the two algorithms suggests the
opposite (Watson 95).

On the other hand, a sloppy implementation of a well-known al-
gorithm with reasonable average case performance may be unaccept-
able for every large input. Linear-time algorithms can easily become
quadratic-time if careful attention is not paid to problems such as
the proper management of sets.

HOW DO I OBTAIN Grail?

G'rail 1s available without charge to researchers and students, or any-
one who wishes to use the software for their own private education.
Version 2.5 of Grail can be obtained from the Grail project’s World
Wide Web site, at

http://wuw.csd.uwo.ca/research/grail

This site also contains links to many other automata research projects.

Grail is not in the public domain. It cannot be sold, used for
commercial purposes, or included as part of a commercial product
without our permission.

ACKNOWLEDGEMENTS

This research was supported by a grant from the Natural Sciences
and Engineering Research Council of Canada. Darrell Raymond can
be reached at drraymon@csd.uwo.ca. Derick Wood can be reached
at dwood@cs.ust.hk.

18

REFERENCES

Barnes 72 K.R. Barnes, Fzploratory Steps Towards a Grammatical
Manipulation Package (GRAMPA) M.Sc. Thesis, McMaster
University, Hamilton, Canada (1972).

Barwise and Etchemendy 93 J. Barwise, J. Etchemendy, Tur-
wmg’s World 3.0: An Introduction to Computability Theory,
Center for the Study of Language and Information, Stanford,
California (1993).

Champarnaud and Hansel 91 J.M. Champarnaud, G. Hansel,
“AUTOMATE: A Computing Package for Automata and Fi-
nite Semigroups” , Journal of Symbolic Computation 12 p. 197-
220 (1991).

Hannay 92 D.G. Hannay, “Hypercard Automata Simulation: Finite-
State, Pushdown, and Turing Machines”, SIGSCE Bulletin
24(2) p. 55-58 (June 1992).

Jansen et al. 90 V. Jansen, A. Potthoff, W. Thomas, U. Wermuth,
“A Short Guide to the AMORE System”, Aachener Informatik-
Berichte 90(02), Lehrstuhl fiir Informatik IT, Universitat Aachen,
Aachen, Germany (January 1990).

Johnson 86 J.H. Johnson, “INR: A Program for Computing Finite
Automata” unpublished manuscript, Department of Computer
Science, University of Waterloo, Waterloo, Canada (January

1986).

Johnson 83 J.H. Johnson, “Formal Models for String Similarity”,
(CS-83-32 Department of Computer Science, University of Wa-
terloo, Waterloo, Canada (November 1983).

Kazman 86 R. Kazman, “Structuring the Text of the Oxford En-
glish Dictionary Through Finite State Transduction”, CS-86-
20, Department of Computer Science, University of Waterloo,

Waterloo, Canada (June 1986).

Kreitz 86 C. Kreitz, “Constructive Automata Theory Implemented
with the Nuprl Proof Development System”, TR-86-779, De-

19

partment of Computer Science, Cornell University, Ithaca, New

York (September 1986).

Leiss 77 E. Leiss, “TREGPACK: An Interactive Package for Regular
Languages and Finite Automata”, CS-77-32, Department of
Computer Science, University of Waterloo, Waterloo, Canada

(October 1977).

Leslie 92 T.K.S. Leslie, “Efficient Approaches to Subset Construc-
tion”, CS-92-29, Department of Computer Science, University
of Waterloo, Waterloo, Canada (April 1992).

LoSacco and Rodger 93 M. LoSacco, S. Rodger, “FLAP: A Tool
for Drawing and Simulating Automata” ED-MEDIA 93, World

Conference on Fducational Multimedia and Hypermediap. 310-
317 (June 1993).

van der Zanden 90 J.G.N.M. van der Zanden, FADELA: Finile
Automata DEbugging LAnguage, Master’s thesis, Department
of Electrical Engineering, Eindhoven University of Technology,
Findhoven, The Netherlands (August 1990).

Watson 94a B.W. Watson, “An Introduction to the FIRE Engine:
A C++ Toolkit for Finite Automata and Regular Expressions”,
Computing Science Note 94/21, Department of Mathematics
and Computing Science, Eindhoven University of Technology,

Eindhoven, The Netherlands (April 1994).

Watson 94b B.W. Watson, “The Design and Implementation of
the FIRE Engine: A C+4++4 Toolkit for Finite Automata and
Regular Expressions”, Computing Science Note 94/22 Depart-
ment of Mathematics and Computing Science, Eindhoven Uni-
versity of Technology, Eindhoven, The Netherlands (April 1994).

Watson 95 B.W. Watson, “Taxonomies and Toolkits of Regular
Language Algorithms” Ph.D. Thesis, Eindhoven University of
Technology, Eindhoven, The Netherlands (1995).

20

